Skip to main content
Log in

Similarity and complementarity of molecular shapes: Applicability of a topological analysis approach

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

Developments based on a topological analysis approach of electron density maps are presented and applied to two different fields: the interpretation of electron density maps of proteins and the description of shape complementarity between a cyclodextrin host and a guest molecule. A global representation of the electron density distribution, through the location, identification and linkage of its critical points (points where the gradient of the density vanishes, i.e., peaks and passes), is generated using the program ORCRIT. On one hand, the interpretation of protein electron density maps is based on similarity evaluations between graphs of critical points and known structures. So far, the method has been applied to 3 Å resolution maps for the recognition of secondary structure motifs using a procedure relevant to expert systems in artificial intelligence. Satisfying matches between critical point graphs and their corresponding protein structure depict the ability of the topological analysis to catch the essential secondary structural features in electron density maps. On the other hand, mapping the accessible volume of a host molecule is achieved by representing the peaks as ellipsoids with axes related to local curvature of the electron density function. Related energies of the interacting species can also be estimated. A qualitative comparison is made between the results generated by the topological analysis and energy values obtained by conventional molecular mechanics calculations. A positive comparison and a close complementarity between cyclodextrin and ligands shows that the topological analysis method gives a good representation of the electron density function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnson, C.K., In Proceedings of the American Crystallographic Association Meeting, Evanston, IL, 1976, abstract B1.

  2. Johnson, C.K., In Proceedings of the American Crystallographic Association Meeting, Asilomar, CA, 1977, abstract JQ6.

  3. Johnson, C.K., ORCRIT: The Oak Ridge Critical Point Network Program, Chemistry Division, Oak Ridge National Laboratory, Oak Ridge, TN, 1977.

    Google Scholar 

  4. Terry, A., Ph.D. Thesis, Stanford University, Stanford, CA, 1983.

  5. Leherte, L., Fortier, S., Glasgow, J.I. and Allen, F.H., Acta Crystallogr., D50 (1994) 155.

    Google Scholar 

  6. Leherte, L. and Allen, F.H., J. Comput.-Aided Mol. Design, 8 (1994) 257.

    Google Scholar 

  7. Mezey, P.G., J. Comput. Chem., 8 (1987) 462.

    Google Scholar 

  8. Mezey, P.G., In Johnson, M.A. and Maggiora, G.M. (Eds.) Concepts and Applications of Molecular Similarity, Wiley, New York, NY, 1990, pp. 321–368.

    Google Scholar 

  9. Hodgkin, E.E. and Richards, W.G., Int. J. Quantum Chem., Quantum Biol. Symp., 14 (1987) 105.

    Google Scholar 

  10. Good, A.C., J. Mol. Graphics, 10 (1992) 144.

    Google Scholar 

  11. Cioslowski, J. and Fleishmann, E.D., J. Am. Chem. Soc., 113 (1994) 64.

    Google Scholar 

  12. Mestres, J., Sola, M., Duran, M. and Carbo, R., J. Comput. Chem., 15 (1994) 1113.

    Google Scholar 

  13. Greer, J., J. Mol. Biol., 82 (1974) 279.

    Google Scholar 

  14. Greer, J., J. Mol. Biol., 100 (1976) 427.

    Google Scholar 

  15. Jones, T.A., Zou, J.Y., Cowan, S.W. and Kjeldgaard, M., Acta Crystallogr., A47 (1991) 110.

    Google Scholar 

  16. Marr, D., Vision, W.H. Freeman, San francisco, CA, 1982.

    Google Scholar 

  17. Richard, F.M., Annu. Rev. Biophys. Bioeng., 6 (1977) 151.

    Google Scholar 

  18. Connolly, M.L., J. Appl. Crystallogr., 16 (1983) 548.

    Google Scholar 

  19. Del, Carpio, C.A., Takahashi, Y. and Sasaki, S.-I., J. Mol. Graphics, 11 (1993) 23.

    Google Scholar 

  20. Santavy, M. and Kypr, J., J. Mol. Graphics, 2 (1984) 47.

    Google Scholar 

  21. Arteca, G.A. and Mezey, P.G., J. Comput. Chem., 9 (1988) 554.

    Google Scholar 

  22. Lin, S.L., Nussinov, R., Fischer, D. and Wolfson, H., Protein Struct. Funct. Genet., 18 (1994) 94.

    Google Scholar 

  23. Leicester, S., Finney, J. and Bywater, R., J. Math. Chem., 16 (1994) 315.

    Google Scholar 

  24. Leicester, S., Finney, J. and Bywater, R., J. Math. Chem., 16 (1994) 343.

    Google Scholar 

  25. Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R. and Ferrin, T.E., J. Mol. Biol., 161 (1982) 269.

    Google Scholar 

  26. Grootenhuis, P.D.J., Rae, D.C., Kollman, P.A. and Kuntz, I.D., J. Comput.-Aided Mol. Design, 8 (1994) 731.

    Google Scholar 

  27. Allen, F.H., Bellard, S., Brice, M.D., Cartwright, B.A., Doubleday, A., Higgs, H., Hummelink, T., Hummelink-Peters, B.G., Kennard, O., Motherwell, W.D.S., Rodgers, J.R. and Watson, D.G., Acta Crystallogr., B35 (1979) 2331.

    Google Scholar 

  28. Allen, F.H., Kennard, O. and Taylor, R., Acc. Chem. Res., 16 (1983) 146.

    Google Scholar 

  29. Smith, V.H., Price, P.F. and Absar, I., Isr. J. Chem., 16 (1977) 187.

    Google Scholar 

  30. Howard, S.T., Hursthouse, M.B., Lehman, C.W., Mallinson, P.R. and Frampton, C.S., J. Chem. Phys., 97 (1992) 5616.

    Google Scholar 

  31. Bader, R.W., Atoms in Molecules-A Quantum Theory, Clarendon, Oxford, 1990.

    Google Scholar 

  32. Johnson, C.K., In Proceedings of the American Crystallographic Association Meeting, Pittsburgh, PA, 1992, abstract PA99.

  33. Popelier, P.L.A., Theor. Chim. Acta, 87 (1994) 465.

    Google Scholar 

  34. Shirsat, R.N., Bapat, S.V. and Gadre, S.R., Chem. Phys. Lett., 200 (1992) 373.

    Google Scholar 

  35. Gadre, S.R. and Shrivactava, I.H., Chem. Phys. Lett., 204 (1993) 350.

    Google Scholar 

  36. Glasgow, J.I., Fortier, S. and Allen, F.H., In Hunter, L. (Ed.) Artificial Intelligence and Molecular Biology, AAAI Press, Menlo Park, CA, 1993, pp. 433–458.

    Google Scholar 

  37. Fortier, S., Castleden, I., Glasgow, J.I., Conklin, D., Walmsley, C., Leherte, L. and Allen, F.H., Acta Crystallogr., D49 (1993) 168.

    Google Scholar 

  38. Butzlaff, M., Dahmen, W., Diekmann, S., Dress, A., Schmitt, E. and von, Kitzing, E., J. Math. Chem., 15 (1994) 77.

    Google Scholar 

  39. Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M., J. Mol. Biol., 112 (1977) 535.

    Google Scholar 

  40. Hall, S.R. and Stewart, J.M. (Eds.) Xtal 3.0 Reference Manual, Universities of Western Australia, Nedlands, and Maryland, College Park, MD, 1990.

    Google Scholar 

  41. Leherte, L., Baxter, K., Glasgow, J.I. and Fortier, S., In Altman, R., Brutlag, D., Karp, P., Lathrop, R. and Searls, D., Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology, MIT/AAAI Press, Menlo Park, CA, 1994, pp. 261–268.

    Google Scholar 

  42. Rich, E. and Knight, K., Artificial Intelligence, McGraw-Hill, New York, NY, 1991.

    Google Scholar 

  43. Patterson, D.W., Introduction to Artificial Intelligence and Expert Systems, Prentice Hall, Englewood Cliffs, NJ, 1990.

    Google Scholar 

  44. Hutchinson, S.A., Cromwell, R.L. and Kak, A.C., In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, 1989, pp. 541–548.

  45. Grant, J.A. and Pickup, B.T., J. Phys. Chem., 99 )1995) 3503.

    Google Scholar 

  46. Leherte, L., Latour, Th. and Vercauteren, D.P., Supramol. Sci., in press.

  47. Lipkowitz, K.B., Green, K.M., Yang, J.-A., Pearl, G. and Peterson, M.A., Chirality, 5 (1993) 51.

    Google Scholar 

  48. Discover, User Guide Parts I, II and III, v. 94.0, Biosym Technologies, San Diego, CA, 1994.

  49. InsightII, User Guide Parts I and II, v. 2.3.0, Biosym Technologies, San Diego, CA, 1993.

  50. Maple, J.R., Dinur, U. and Hagler, A.T., Proc. Natl. Acad. Sci. USA, 85 (1988) 5350.

    Google Scholar 

  51. Waldman, M. and Hagler, A.T., J. Comput. Chem., 14 (1993) 1077.

    Google Scholar 

  52. Maple, J.R., Hwang, M.J., Stockfish, T.P., Dinur, U., Waldman, M., Ewig, C.S. and Hagler, A.T., J. Comput. Chem., 15 (1994) 162.

    Google Scholar 

  53. Mezey, P.G., J. Math. Chem., 7 (1991) 39.

    Google Scholar 

  54. Meyer, A.Y. and Richards, W.G., J. Comput.-Aided Mol. Design, 5 (1991) 427.

    Google Scholar 

  55. Zabrodsky, H. and Avnir, D., J. Am. Chem. Soc., 117 (1995) 462.

    Google Scholar 

  56. Meyer, Y., Wavelets-Algorithms & Applications, SIAM, Philadelphia, PA, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a presentation given at the 14th Molecular Graphics and Modelling Society Conference, held in Cairns, Australia, August 27-September 1, 1995.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leherte, L., Latour, T. & Vercauteren, D.P. Similarity and complementarity of molecular shapes: Applicability of a topological analysis approach. J Computer-Aided Mol Des 10, 55–66 (1996). https://doi.org/10.1007/BF00124465

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00124465

Keywords

Navigation