Skip to main content
Log in

Dimer asymmetry in superoxide dismutase studied by molecular dynamics simulation

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

Molecular dynamics (MD) simulations of 100 ps have been carried out to study the active-site behaviour of the Cu,Zn superoxide dismutase dimer (SOD) in water. The active site of each subunit was monitored during the whole simulation by calculating the distances between functional residues and the catalytic copper. The results indicate that charge orientation is maintained at each active site but the solvent accessibility varies. Analysis of the MD simulation, carried out by using the atomic displacement covariance matrix, has shown a different intra-subunit correlation pattern for the two monomers and the presence of inter-subunit correlations. The MD simulation presented here indicates an asymmetry in the two active sites and different dynamic behaviour of the two SOD subunits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Halliwell B, and Gutteridge J.M.C., Methods Enzymol. 186 (1990) 1.

    Google Scholar 

  2. Argese E., Viglino P., Rotilio G., Scarpa M. and Rigo A., Biochemistry, 26 (1987) 3224.

    Google Scholar 

  3. Desideri A., Falconi M., Polticelli F., Bolognesi M., Djinovic K. and Rotilio G., J. Mol. Biol. 223 (1992) 337.

    Google Scholar 

  4. Tainer J.A., Getzoff E.D., Beem K.M., Richardson J.S. and Richardson D.C., J. Mol. Biol., 160 (1982) 181.

    Google Scholar 

  5. Bernstein F., Koetzle T., Williams G., MeyerJr. E., Brice M., Rodgers J., Kennard O., Shimanouchi T. and Tasumi M., J. Mol. Biol., 112 (1977) 535.

    Google Scholar 

  6. Kitagawa Y., Tanaka N., Hata Y., Kusunoki M., Lee G. Katsube Y., Asada K., Aibara S. and Morita Y., J. Biochem., 109 (1991) 477.

    Google Scholar 

  7. Djinovic K., Gatti G., Coda A., Antolini L., Pelosi G., Desideri A., Falconi M., Marmocchi F., Rotilio G. and Bolognesi M., J. Mol. Biol., 225 (1992) 791.

    Google Scholar 

  8. Parge H.E., Hallewell R.A. and Tainer J.A., Proc. Natl. Acad. Sci. USA, 89 (1992) 6109.

    Google Scholar 

  9. Djinovic-Carugo K., Battistoni A., Carri M.T. Polticelli F., Desideri A., Rotilio G., Coda A., Wilson K.S. and Bolognesi M., Acta Crystallogr., D52 (1996) 176.

    Google Scholar 

  10. Rypnicwsky W.R., Mangani S., Bruni B., Orioli P.L., Casati M. and Wilson K.S., J. Mol. Biol. 251 (1995) 282.

    Google Scholar 

  11. Carloni P., Blochl P.E. and Parrinello M., J. Phys. Chem., 99 (1995) 1338.

    Google Scholar 

  12. Shen J., Subramaniam S., Wong C.F. and McCammon A., Biopolymers, 28 (1989) 2085.

    Google Scholar 

  13. Shen J. and McCammon A., Chem. Phys., 158 (1991) 191.

    Google Scholar 

  14. Wong Y., Clark T.W., Shen J. and McCammon A., Mol. Simul., 10 (1993) 277.

    Google Scholar 

  15. Luty B.A., El Amrani S. and McCammon A.J., J. Am. Chem. Soc., 115 (1993) 11874.

    Google Scholar 

  16. Banci L., Carloni P., La Penna G. and Orioli P.L., J. Am. Chem. Soc., 114 (1992) 6994.

    Google Scholar 

  17. Banci L., Carloni P. and Orioli P.L., Proteins, 18 (1994) 216.

    Google Scholar 

  18. Brooks B.R., Bruccoleri R.E., Olafson B.D., States D.J., Swaminathan S. and Karplus M., J. Comput. Chem. 4 (1983) 187.

    Google Scholar 

  19. Berendsen H.J.C., Postma J.P.M., Van Gunsteren W.F. and Hermans J., In Pullman B. (Ed.) Intermolecular Forces, Reidel, Dordrecht, The Netherlands, 1981, pp. 331–342.

    Google Scholar 

  20. Verlet L., Phys. Rev., 159 (1967) 98.

    Google Scholar 

  21. Ryckaert J.P., Ciccotti G. and Berendsen H.J.C., J. Comput. Phys., 23 (1977) 327.

    Google Scholar 

  22. Shen J., Wong C.F., Subramaniam S., Albright T.A. and McCammon J.A., J. Comput. Chem., 11 (1990) 346.

    Google Scholar 

  23. Komeiji Y., Uebayasi M. and Yamato I., Proteins, 20 (1994) 248.

    Google Scholar 

  24. Getzoff E.D., Hallewell R.A. and Tainer J.A., In Inouye M. and Sarma R. (Eds.) Protein Engineering, Academic Press, New York, NY, U.S.A., 1986, pp. 41–69.

    Google Scholar 

  25. Fisher C.L., Cabelli D.E., Tainer J.A., Hallewell R.A., and Getzoff E.D., Proteins, 19 (1994) 24.

    Google Scholar 

  26. Getzoff E.D., Cabelli D.E., Fisher C.L., Parge H.E., Viezzoli M.S., Banci L. and Hallewell R.A., Nature, 358 (1992) 347.

    Google Scholar 

  27. Polticelli F., Bottaro G., Battistoni A., Carri M.T., Djinovic-Carugo K., Bolognesi M., O'Neill P., Rotilio G. and Desideri A., Biochemistry, 34 (1995) 6043.

    Google Scholar 

  28. Sines J.J., Allison S.A. and McCammon J.A., Biochemistry, 29 (1990) 9403.

    Google Scholar 

  29. Clarage B.J., Romo T., Andrews B.K., Pettitt M. and PhillipsJr. G.N., Proc. Natl. Acad. Sci. USA, 92 (1995) 3288.

    Google Scholar 

  30. Paci E. and Marchi M., J. Phys. Chem. 100 (1996) 4314.

    Google Scholar 

  31. Rigo A., Viglino P., Bonori M., Cocco D., Calabrese L. and Rotilio G., Biochem. J., 169 (1978) 277.

    Google Scholar 

  32. Philips J.P., Tainer J.A., Getzoff E.D., Boulianne G.L., Kirby K. and Hilliker A.J., Proc. Natl. Acad. Sci. USA 92 (1995) 8574.

    Google Scholar 

  33. Richards F.M., Annu. Rev. Biophys. Bioeng., 6 (1977) 151.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falconi, M., Gallimbeni, R. & Paci, E. Dimer asymmetry in superoxide dismutase studied by molecular dynamics simulation. J Computer-Aided Mol Des 10, 490–498 (1996). https://doi.org/10.1007/BF00124478

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00124478

Keywords

Navigation