Skip to main content
Log in

The conformational preferences of γ-lactam and its role in constraining peptide structure

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

The conformational constraints imposed by γ-lactams in peptides have been studied using valence force field energy calculations and flexible geometry maps. It has been found that while cyclisation restrains the Ψ of the lactam, non-bonded interactions contribute to the constraints on ϕ of the lactam. The γ-lactam also affects the (ϕ,Ψ) of the residue after it in a peptide sequence. For an l-lactam, the ring geometry restricts Ψ to about-120°, and ϕ has two minima, the lowest energy around-140° and a higher minimum (5 kcal/mol higher) at 60°, making an l-γ-lactam more favourably accommodated in a near extended conformation than in position 2 of a type II′ β-turn. The energy of the ϕ∼+60° minimum can be lowered substantially until it is more favoured than the-140° minimum by progressive substitution of bulkier groups on the amide N of the l-γ-lactam. The (ϕ,Ψ) maps of the residue succeeding a γ-lactam show subtle differences from those of standard N-methylated residues. The dependence of the constraints on the chirality of γ-lactams and N-substituted γ-lactams, in terms of the formation of secondary structures like β-turns is discussed and the comparison of the theoretical conformations with experimental results is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Toniolo, C., Biopolymers, 28 (1989) 247.

    Google Scholar 

  2. Hruby, V.J., Life Sci., 31 (3) (1982) 189.

    Google Scholar 

  3. Freidinger, R.M., Veber, D.F., Perlow, D.S., Brooks, J.R. and Saperstein, R., Science, (210 1980) 656.

    Google Scholar 

  4. Freidinger, R.M., Veber, D.F., Hirschmann, R. and Paege, L.M., Int. J. Pept. Prot. Res., 16 (1980) 464.

    Google Scholar 

  5. Freidinger, R.M., Perlow, D.S. and Veber, D.F., J. Org. Chem., 47 (1982) 104.

    Google Scholar 

  6. Thaisrivongs, S., Pals, D.T., Turner, S.R. and Kroll, L.T., J. Med. Chem., 31 (1988) 1369.

    Google Scholar 

  7. Yu, K.L., Rajakumar, G., Srivastava, L.K., Mishra, R.K. and Johnson, R.L., J. Med. Chem., 31 (1988) 1430.

    Google Scholar 

  8. Mishra, R.K., Chiu, S., Chiu, P. and Mishra, C. P., Methods Find. Exp. Clin. Pharmacol., 5 (1983) 203.

    Google Scholar 

  9. Freidinger, R.M., In Rich, D.H. and Gross, E. (Eds.) Peptides: Synthesis-Structure-Function (Proceedings of the 7th American Peptide Symposium), Pierce Chemical Co., Rockford, IL., 1981, pp. 673–684.

    Google Scholar 

  10. Valle, G., Crisma, M., Toniolo, C., Yu, K.L. and Johnson, R.L., Int. J. Pept. Prot. Res., 33 (1989) 181.

    Google Scholar 

  11. Valle, G., Crisma, M., Toniolo, C., Yu, K.L. and Johnson, R.L., J. Chem. Soc. Perkins Trans. II (1989) 83.

    Google Scholar 

  12. Snyder, R.G. and Schachtschneider, J.H., Spectrochim. Acta, 19 (1963) 85.

    Google Scholar 

  13. Dauber, P., Goodman, M., Hagler, A.T., Osguthorpe, D.J., Sharon, R. and Stern, P.S., Proc. ACS Symp. on Supercomputers in Chemistry, 173 (1981) 161.

    Google Scholar 

  14. Dauber-Osguthorpe, P., Roberts, V.A., Osguthorpe, D.J., Wolff, J., Genest, M. and Hagler, A.T., Proteins: Structure, Function, and Genetics, 4 (1988) 31.

    Google Scholar 

  15. Paul, P.K.C., Osguthorpe, P.D., Campbell, M.M., Brown, D.W., Kinsman, R.G., Moss, C. and Osguthorpe, D.J., Biopolymers, 29 (1990) 623.

    Google Scholar 

  16. Ramachandran, G.N., Ramakrishnan, C. and Sasisekharan, V., J. Mol. Biol., 7 (1963) 95.

    Google Scholar 

  17. Zimmerman, S.S. and Scheraga, H.A., Proc. Natl. Acad. Sci. U.S.A., 74 (1977) 4126.

    Google Scholar 

  18. Stern, P.S., Chorev, M., Goodman, M. and Hagler, A.T., Biopolymers, 22 (1983) 1901.

    Google Scholar 

  19. Venkatachalam, C.M., Biopolymers, 6 (1968) 1425.

    Google Scholar 

  20. Rose, G.D., Gierasch, L.M. and Smith, J.A., Adv. Prot. Chem., 37 (1985) 1.

    Google Scholar 

  21. Chandrasekaran, R., Lakshminarayanan, A.V., Pandya, U.V. and Ramachandran, G.N., Biochim. Biophys. Acta, 303 (1973) 14.

    Google Scholar 

  22. Reed, L.L. and Johnson, P.L., J. Am. Chem. Soc., 95 (1973) 7523.

    Google Scholar 

  23. Paul, P.K.C., Dauber-Osguthorpe, P., Campbell, M.M. and Osguthorpe, D.J., Biochem. Biophys. Res. Comm., 165 (1989) 1051.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paul, P.K.C., Burney, P.A., Campbell, M.M. et al. The conformational preferences of γ-lactam and its role in constraining peptide structure. J Computer-Aided Mol Des 4, 239–253 (1990). https://doi.org/10.1007/BF00125013

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00125013

Key words

Navigation