Skip to main content
Log in

A common motif in G-protein-coupled seven transmembrane helix receptors

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

G-protein-coupled receptors all share the seven transmembrane helix motif similar to bacteriorhodopsin. This similarity was exploited to build models for these receptors. From an analysis of a multi-sequence alignment of 225 G-protein-coupled receptors belonging to the rhodopsin-like superfamily, conclusions could be drawn about functional residues. Seven residues in the transmembrane regions are conserved throughout all aligned receptors. These residues cluster at the cytosolic side of the transmembrane helices and are for all rhodopsin-like G-protein-coupled receptors implied in signal transduction. An analysis of correlated mutations reveals a number of residues, both in the helices and in the cytosolic loops, that might be important in the signal transduction pathway in subfamilies of this receptor family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birdsall, N.J.M., Trends Pharmacol. Sci., 12 (1991) 9.

    Google Scholar 

  2. Mollon, J., Nature, 351 (1991) 696.

    Google Scholar 

  3. Probst, W.C., Snyder, L.A., Schuster, D.I., Brosius, J. and Sealfon, S.C., DNA Cell Biol., 11 (1992) 1.

    Google Scholar 

  4. Strosberg, A.D., Eur. J. Biochem., 196 (1991) 1.

    Google Scholar 

  5. Savarese, T.M. and Fraser, C.M., Biochem. J., 283 (1992) 1.

    Google Scholar 

  6. Barnard, E., Trends Biochem. Sci., 17 (1992) 368.

    Google Scholar 

  7. Attwood, T.K. and Findlay, J.B.C., Protein Eng., 6 (1993) 167–176.

    Google Scholar 

  8. Attwood, T.K. and Findlay, J.B.C., 7TM, 2 (1993).

  9. Konig, B., Arendt, A., McDowell, J.H., Kahlert, M., Hargrave, P.A. and Hofmann, K.P., Proc. Natl. Acad. Sci. USA, 86 (1989) 6878.

    Google Scholar 

  10. Henderson, R., Baldwin, J.M., Ceska, T.A., Zemlin, F., Beckmann, E. and Downing, K.H., J. Mol. Biol., 212 (1990) 899.

    Google Scholar 

  11. Nathans, J., Biochemistry, 31 (1992) 4931.

    Google Scholar 

  12. Dohlman, H.G., Thorne, J., Caron, M.C. and Lefkowitz, R.J., Annu. Rev. Biochem., 60 (1991) 653.

    Google Scholar 

  13. Hibert, M., Trumpp-Kallmeyer, S., Bruinvels, A. and Hoflack, J., Mol. Pharmacol., 40 (1991) 8.

    Google Scholar 

  14. Trumpp-Kallmeyer, S., Hoflack, J., Bruinvels, A. and Hibert, M., J. Med. Chem., 35 (1992) 3448.

    Google Scholar 

  15. Cronet, P., Sander, C. and Vriend, G., Protein Eng., 6 (1993) 59.

    Google Scholar 

  16. Sander, C. and Schneider, R., Protein Struct. Funct. Genet., 9 (1991) 56.

    Google Scholar 

  17. Libert, F., Parmentier, M., Lefort, A., Dinsart, C., VanSande, J., Maenhaut, C., Simons, M.-J., Dumont, J.E. and Simons, M.-J., Dumont, J.E. and Vassart, G., Science, 244 (1989) 569.

    Google Scholar 

  18. Loosfelt, H., Mirashi, M., Atger, M., Salesse, R., Thi, M.T.V.H.-L., Jolivet, A., Guiochon-Mantel, A., Sar, S., Jallal, B., Garnier, J. and Milgrom, E., Science, 245 (1989) 525.

    Google Scholar 

  19. Hershey, A.D. and Krause, J.E., Science, 247 (1999) 958.

    Google Scholar 

  20. Sunahara, R.K., Niznik, H.B., Weiner, D.M., Stormann, T.M., Brann, M.R., Kennedy, J.L., Gelernter, J.E., Rozmahel, R., Yang, Y., Israel, Y., Seeman, P. and O'Dowd, B.F., Nature, 347 (1990) 80.

    Google Scholar 

  21. Hirata, M., Hayashi, Y., Ushikubi, F., Yokota, Y., Kageyama, R., Nakanishi, S. and Narumiya, S., Nature, 349 (1991) 617.

    Google Scholar 

  22. VanTol, H.H.M., Bunzow, J.R., Guan, H.-C., Sunahara, R.K., Seeman, P., Niznik, H.B. and Civelli, O., Nature, 350 (1991) 610.

    Google Scholar 

  23. Sunahara, R.K., Guan, H.-C., O'Dowd, B.F., Seeman, P., Laurier, L.G., Ng, G., George, S.R., Torchia, J., VanTol, H.H.M. and Niznik, H.B., Nature, 350 (1991) 614.

    Google Scholar 

  24. Gerard, N.P. and Gerard, C., Nature, 349 (1991) 614.

    Google Scholar 

  25. Holmes, W.E., Lee, J., Kuang, W.-I., Rice, G.C. and Wood, W.I., Science, 253 (1991) 1278.

    Google Scholar 

  26. Gribskov, M., Luethy, R. and Eisenberg, D., Methods Enzymol., 183 (1990) 146.

    Google Scholar 

  27. Henikoff, S. and Henikoff, J.G., Nucleic Acids Res., 19 (1991) 6565.

    Google Scholar 

  28. SWISS-PROT Protein Sequence Database, EMBL Data Library, D-69117 Heidelberg, Germany and Amos Bairoch, Department de Biochimie Medicale, Centre Medical Universitaire, 1211 Geneva 4, Switzerland.

  29. PIR, NBRF, Georgetown University Medical Center, 3900 Reservoir Road N.W., Washington, DC.

  30. Sander, C. and Schneider, R., In Soumpasis, D.M. and Jovin, T.M. (Eds.) Computation of Biomolecular Structures, Springer Verlag, Berlin, 1992, pp. 15–28.

    Google Scholar 

  31. Goebel, U., Sander, C. and Valencia, A., submitted for publication.

  32. Breckenridge, R. and Dufton, M.J., J. Mol. Evol., 26 (1987) 274.

    Google Scholar 

  33. Gregoret, L.M. and Sauer, R.T., Proc. Natl. Acad. Sci. USA, 90 (1993) 4246.

    Google Scholar 

  34. Oliveira, L., Paiva, A.C.M., Sander, C. and Vriend, G., submitted for publication.

  35. Franke, R.R., Sakmar, T.P., Oprian, D.D. and Khorana, H.G., J. Biol. Chem., 263 (1988) 2119

    Google Scholar 

  36. Franke, R.R., Konig, B., Sakmar, T.P., Khorana, H.G. and Hofmann, K.P., Science, 250 (1990) 123.

    Google Scholar 

  37. Cotecchia, S., Exum, S., Caron, M.G. and Lefkowitz, R.J., Proc. Natl. Acad. Sci. USA, 87 (1990) 2896.

    Google Scholar 

  38. Cotecchia, S., Ostrowski, J., Kjelsberg, M.A., Caron, M.G. and Leflowitz, R.J., J. Biol. Chem., 267 (1992) 1633.

    Google Scholar 

  39. Kjelsberg, M.A., Cotecchia, S., Ostrowski, J., Caron, M.G. and Lefkowitz, R.J., J. Biol. Chem., 267 (1992) 1430.

    Google Scholar 

  40. Palm, D., Munch, G., Dees, C. and Hekman, M., FEBS Lett., 254 (1989) 89.

    Google Scholar 

  41. Cheung, A.H., Huang, R.-R.C., Graziano, M.P. and Strader, C.D., FEBS Lett., 279 (1991) 277.

    Google Scholar 

  42. Strader, C.D., Dixon, R.A.F., Cheung, A.H., Candelore, M.R., Blake, A.D. and Sigal, I.S., J. Biol. Chem., 262 (1987) 16439.

    Google Scholar 

  43. O'Dowd, B.F., Hnatowich, M., Regan, J.W., Leader, W.M., Caron, M.G. and Lefkowitz, R.J., J. Biol. Chem., 263 (1988) 15985.

    Google Scholar 

  44. Okamoto, T. and Nishimoto, I., J. Biol. Chem., 267 (1992) 8342.

    Google Scholar 

  45. Fraser, C.M., Chung, F.Z., Wang, C.D. and Venter, J.C., Proc. Natl. Acad. Sci. USA, 85 (1988) 5478.

    Google Scholar 

  46. Fraser, C.M., Wang, C.D., Robinson, D.A., Gocayne, J.D. and Venter, J.C., Mol. Pharmacol., 36 (1989) 840.

    Google Scholar 

  47. Horstman, D.A., Brandon, S., Wilson, A.L., Guyer, C.A., CragoeJr., E.J. and Limbird, L.E., J. Biol. Chem., 265 (1990) 21590.

    Google Scholar 

  48. Wess, I., Gdula, W.I. and Brann, M.R., EMBO J., 10 (1990) 3729.

    Google Scholar 

  49. Strader, C.D., Sigal, I.S., Candelore, M.R., Rands, E., Hill, W.S. and Dixon, R.A.F., J. Biol. Chem., 263 (1988) 10267.

    Google Scholar 

  50. Nakayama, T.A. and Khorana, H.G., J. Biol. Chem., 265 (1990) 15762.

    Google Scholar 

  51. Nakayama, T.A. and Khorana, H.G., J. Biol. Chem., 266 (1991) 4269.

    Google Scholar 

  52. Khorana, H.G., J. Biol. Chem., 267 (1992) 1.

    Google Scholar 

  53. Zhukovzky, E.A. and Oprian, D.D., Science, 251 (1991) 558.

    Google Scholar 

  54. Sakmar, T.P., Franke, R.R. and Khorana, H.G., Proc. Natl. Acad. Sci. USA, 86 (1989) 8309.

    Google Scholar 

  55. Nathans, J., Biochemistry, 29 (1990) 937.

    Google Scholar 

  56. Sakmar, T.P., Franke, R.R. and Khorana, H.G., Proc. Natl. Acad. Sci. USA, 88 (1991) 3079.

    Google Scholar 

  57. Strader, C.D., Candelore, M.R., Hill, W.S., Sigal, I.S. and Dixon, R.A.F., J. Biol. Chem., 264 (1989) 13572.

    Google Scholar 

  58. Weinstein, H., Mazucek, A.P., Osman, R. and Topial, S., Mol. Pharmacol., 29 (1986) 28.

    Google Scholar 

  59. Timmerman, H, Trends Pharmacol. Sci., 13 (1991) 6.

    Google Scholar 

  60. Freedman, R. and Jarnagin, K., In Bönner, G., Fritz, H., Unger, T., Roscher, A. and Luppertz, K. (Eds.) Recent Progress on Kinins, Birkhauser Verlag, Basel, 1992, pp. 487–496.

    Google Scholar 

  61. Weitz, C.J. and Nathans, J., Neuron, 8 (1992) 465.

    Google Scholar 

  62. Strader, C.D., Sigal, I.S. and Dixon, R.A.F., FASEB J., 3 (1989) 1825.

    Google Scholar 

  63. Bownds, D., Nature, 216 (1967) 1178.

    Google Scholar 

  64. Wang, J.K., McDowell, J.H. and Hargrave, P.A., Biochemistry, 19 (1980) 5111.

    Google Scholar 

  65. Mullen, E. and Akhtar, M., FEBS Lett., 132 (1981) 261.

    Google Scholar 

  66. Findlay, J.B.C., Brett, M. and Pappin, D.J.C., Nature, 293 (1981) 314.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveira, L., Paiva, A.C.M. & Vriend, G. A common motif in G-protein-coupled seven transmembrane helix receptors. J Computer-Aided Mol Des 7, 649–658 (1993). https://doi.org/10.1007/BF00125323

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00125323

Key words

Navigation