Skip to main content
Log in

Quantitative structure-activity relationships by neural networks and inductive logic programming. I. The inhibition of dihydrofolate reductase by pyrimidines

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

Neural networks and inductive logic programming (ILP) have been compared to linear regression for modelling the QSAR of the inhibition of E. coli dihydrofolate reductase (DHFR) by 2,4-diamino-5-(substitured benzyl)pyrimidines, and, in the subsequent paper [Hirst, J.D., King, R.D. and Sternberg, M.J.E., J. Comput.-Aided Mol. Design, 8 (1994) 421], the inhibition of rodent DHFR by 2,4-diamino-6,6-dimethyl-5-phenyl-dihydrotriazines. Cross-validation trials provide a statistically rigorous assessment of the predictive capabilities of the methods, with training and testing data selected randomly and all the methods developed using identical training data. For the ILP analysis, molecules are represented by attributes other than Hansch parameters. Neural networks and ILP perform better than linear regression using the attribute representation, but the difference is not statistically significant. The major benefit from the ILP analysis is the formulation of understandable rules relating the activity of the inhibitors to their chemical structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hansch, C., Maloney, P.P., Fujita, T. and Muir, R.M., Nature, 194 (1962) 178.

    Google Scholar 

  2. Hansch, C., Acc. Chem. Res., 2 (1969) 232.

    Google Scholar 

  3. So, S.-S. and Richards, W.G., J. Med. Chem., 35 (1992) 3201.

    Google Scholar 

  4. Andrea, T.A. and Kalayeh, H., J. Med. Chem., 34 (1991) 2824.

    Google Scholar 

  5. Aoyama, T., Suzuki, Y. and Ichikawa, H., J. Med. Chem., 33 (1990) 905.

    Google Scholar 

  6. Aoyama, T. and Ichikawa, H., J. Chem. Inf. Comput. Sic., 32 (1992) 492.

    Google Scholar 

  7. Tetko, I.V., Luik, A.I. and Poda, G.I., J. Med. Chem., 36 (1993) 811.

    Google Scholar 

  8. King, R.D., Muggleton, S., Lewis, R.A. and Sternberg, M.J.E., Proc. Natl. Acad. Sci. USA, 89 (1992) 11322.

    Google Scholar 

  9. Hirst, J.D., King, R.D. and Sternberg, M.J.E., J. Comput.-Aided Mol. Design, 8 (1994) 421.

    Google Scholar 

  10. Li, R.L., Hansch, C. and Kaufman, B.T., J. Med. Chem., 25 (1982) 435.

    Google Scholar 

  11. Champness, J.N., Stammers, D.K. and Beddell, C.R., FEBS Lett., 199 (1986) 61.

    Google Scholar 

  12. Matthews, D.A., Bolin, J.T., Burridge, J.M., Filman, D.J., Volz, K.W., Kaufman, B.T., Beddell, C.R., Champness, J.N., Stammers, D.K. and Kraut, J., J. Biol. Chem., 260 (1985) 381.

    Google Scholar 

  13. Selassie, C.D., Li, R.-L., Poe, M. and Hansch, C., J. Med. Chem., 34 (1991) 46.

    Google Scholar 

  14. Hansch, C., Li, R.-I., Blaney, J.M. and Langridge, R., J. Med. Chem., 25 (1982) 777.

    Google Scholar 

  15. Li, R.-L. and Poe, M., J. Med. Chem., 31 (1988) 366.

    Google Scholar 

  16. Dietrich, S.W., Blaney, J.M., Reynolds, M.A., Jow, P.Y.C. and Hansch, C., J. Med. Chem., 23 (1980) 1205.

    Google Scholar 

  17. Roth, B., Aig, E., Rauckman, B.S., Srelitz, J.Z., Phillips, A.P., Ferone, R., Bushby, S.R.M. and Siegel, C.W., J. Med. Chem., 24 (1981) 933.

    Google Scholar 

  18. Roth, B., Rauckman, B.S., Ferone, R., Baccanari, D.P., Champness, J.N. and Hyde, R.M., J. Med. Chem., 30 (1987) 348.

    Google Scholar 

  19. Leo, A., Hansch, C. and Elkins, D., Chem. Rev., 71 (1971) 525.

    Google Scholar 

  20. Muggleton, S. and Feng, C., In Arikawa, S., Goto, S., Ohsuga, S. and Yokomori, T. (Eds.) Proceedings of the First Conference on Algorithmic Learning Theory, Japanese Society of Artificial Intelligence, Ohmsha Press, Tokyo, 1990, pp. 368–381.

    Google Scholar 

  21. Minitab, release 7.2, VAX/VMS version, Minitab, Inc., Pensylvania State University, Philadelphia, PA, 1989.

    Google Scholar 

  22. Rumelhart, D.E., Hinton, G.E. and Williams, R.J., Nature, 323 (1986) 533.

    Google Scholar 

  23. Owens, A.J. and Filkin, D.L., In IEEE/INNS International Joint Conference of Neural Networks, Washington, DC, 1989, pp. 381–386.

  24. Gear, C.W., Numerical Initial Value Problems in Ordinary Differential Equations, Prentice Hall, Englewood Cliffs, NJ, 1971.

    Google Scholar 

  25. Livingstone, D.J. and Salt, D.W., Bioorg. Med. Chem. Lett., 2 (1992) 213.

    Google Scholar 

  26. Livingstone, D.J. and Mallanack, D.T., J. Med. Chem., 36 (1993) 1295.

    Google Scholar 

  27. DeLong, H., A Profile of Mathematical Logic, Addison-Wesley, Reading, MA, 1970.

    Google Scholar 

  28. David, H.A., Biometrika, 74 (1987) 432.

    Google Scholar 

  29. Muggleton, S., Srinivasan, A. and Bain, M., In Sleeman, D. and Edwards, P. (Eds.) Proceedings of the 9th International Conference on Machine Learning, Morgan-Kaufman, San Mateo, CA, 1992, pp. 338–347.

    Google Scholar 

  30. Kendall, M. and Stuart, A., The Advanced Theory of Statistics, Griffen, London, 1977.

    Google Scholar 

  31. Press, W.H., Teukolsky, S.A., Vettering, W.T. and Flannery, B.P., Numerical Recipes, Cambridge University Press, Cambridge, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirst, J.D., King, R.D. & Sternberg, M.J.E. Quantitative structure-activity relationships by neural networks and inductive logic programming. I. The inhibition of dihydrofolate reductase by pyrimidines. J Computer-Aided Mol Des 8, 405–420 (1994). https://doi.org/10.1007/BF00125375

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00125375

Key words

Navigation