Skip to main content
Log in

COSMIC(90): An improved molecular mechanics treatment of hydrocarbons and conjugated systems

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

Four modifications to the COSMIC molecular mechanics force field are described, which greatly increase both its versatility and the accuracy of calculated conformational energies. The Hill non-bonded van der Waals potential function has been replaced by a two-parameter Morse curve and a new H-H potential, similar to that in MM3, incorporated. Hydrocarbon energies in particular are much improved.

A simple iterative Hückel pi-electron molecular orbital calculation allows modelling of conjugated systems. Calculated bond lengths and rotational barriers for a series of conjugated hydrocarbons and nitrogen heterocycles are shown to be as accurate as those determined by the MM2 SCF method.

Explicit hydrogen-bonding potentials for H-bond acceptor-donor atom pairs have been included to give better hydrogen bond energies and lengths. The van der Waals radii of protonic hydrogens are reduced to 0.5 Å and the energy well depth is increased to 1.0 kcal mol-1.

Two new general atom types, N+ 2sp and O- 3sp , have been introduced which allow a wide variety of charged conjugated systems to be studied. A minimum of parameterisation is required, as the new types are easily included in the Hückel scheme which automatically adjusts bond and torsional parameters according to the defined bond-order relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Vinter, J.G., Davis, A. and Saunders, M.R., J. Comput.-Aided Mol. Design, 1 (1987) 31.

    Google Scholar 

  2. Allinger, N.L., J. Am. Chem. Soc., 99 (1977) 8127.

    Google Scholar 

  3. Most recent version (MM2(87)) available to academic institutions from QCPE, Chemistry Department, Indiana University, Bloomington, Indiana 47405, U.S.A.

  4. Abraham, R.J. and Haworth, I.S., J. Comput.-Aided Mol. Design 2 (1988) 125.

    Google Scholar 

  5. Sprague, J.T., Tai, J.C., Yuh, Y. and Allinger, N.L., J. Comput. Chem., 8 (1987) 581.

    Google Scholar 

  6. Liljefors, T., Tai, J.C., Li, S. and Allinger, N.L., J. Comput. Chem., 8 (1987) 1051.

    Google Scholar 

  7. Discover Version 2.5 User Manual, CVFF Force Field, Biosym Technologies, San Diego, CA 92121, U.S.A.

  8. Lifson, S., Hagler, A.T. and Dauber, P., J. Am. Chem. Soc., 101 (1979) 5111.

    Google Scholar 

  9. Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., Profeta, S.Jr. and Weiner, P., J. Am. Chem. Soc., 106 (1984) 765.

    Google Scholar 

  10. Weiner, S.J., Kollman, P.A., Nguyen, D.T. and Case, D.A., J. Comput. Chem., 7 (1986) 230.

    Google Scholar 

  11. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S. and Karplus, M., J. Comput. Chem., 4 (1983) 187.

    Google Scholar 

  12. Hill, T.L., Chem. Phys., 16 (1948) 399.

    Google Scholar 

  13. Allinger, N.L., Yuh, Y.H. and Lii, J.-H., J. Am. Chem. Soc., 111 (1989) 8551.

    Google Scholar 

  14. Lii, J.-H. and Allinger, N.L., J. Am. Chem. Soc., 111 (1989) 8566.

    Google Scholar 

  15. Lii, J.-H. and Allinger, N.L., J. Am. Chem. Soc., 111 (1989) 8576.

    Google Scholar 

  16. Hirota, E., Endo, Y., Saito, S. and Duncan, J.L., J. Mol. Spectrosc., 89 (1981) 285.

    Google Scholar 

  17. Wiberg, K.B. and Murcko, M.A., J. Am. Chem. Soc., 110 (1988) 8029.

    Google Scholar 

  18. Compton, D.A.C., Montero, S. and Murphy, W.F., J. Phys. Chem., 84 (1980) 3587.

    Google Scholar 

  19. Booth, H. and Everett, J.R., J. Chem. Soc. Perkin II, (1980) 255.

    Google Scholar 

  20. Beckett, C.W., Pitzer, K.S. and Spitzer, R., J. Am. Chem. Soc. 69 (1947) 2488.

    Google Scholar 

  21. Hirsch, J.A., Top. Stereochem., 1 (1967) 199.

    Google Scholar 

  22. Eliel, E.L. and Gilbert, E.C., J. Am. Chem. Soc., 91 (1969) 5487.

    Google Scholar 

  23. Squillacote, M.E. and Neth, J.M., J. Am. Chem. Soc., 109 (1987) 198.

    Google Scholar 

  24. Hammarström, L.-G., Liljefors, T. and Gasteiger, J., J. Comput. Chem., 9 (1988) 424.

    Google Scholar 

  25. Shen, Q. and Peloquin, J.M., Acta Chem. Scand., A 42 (1988) 367.

    Google Scholar 

  26. Kasai, P. and Myers, R., J. Chem. Phys., 30 (1959) 1096.

    Google Scholar 

  27. Kitayama, T. and Miyazawa, T., Bull. Chem. Soc. Jpn., 41 (1968) 1976.

    Google Scholar 

  28. Engelsholm, G., Luntz, A., Gwinn, W. and Harris, D., J. Chem. Phys., 50 (1969) 2446.

    Google Scholar 

  29. Wiberg, K.B. and Laidig, K.E., J. Am. Chem. Soc., 109 (1987) 5935.

    Google Scholar 

  30. Burkert, U. and Allinger, N.L., Molecular Mechanics, American Chemical Society, Washington, DC, 1982.

    Google Scholar 

  31. Allinger, N.L. and Sprague, J.T., J. Am. Chem. Soc., 95 (1973) 3893.

    Google Scholar 

  32. Streitweiser, A., Molecular Orbital Theory for Organic Chemists, Wiley, New York, 1961.

    Google Scholar 

  33. Golebiewski, A. and Nawakowski, J., Acta Phys. Polon., 25 (1964) 647.

    Google Scholar 

  34. Dáhne, S. and Moldenhauer, F., Progr. Phys. Org. Chem., 15 (1985) 1.

    Google Scholar 

  35. Abraham, R.J. and Smith, P.E., J. Comput.-Aided Mol. Design, 3 (1989) 175.

    Google Scholar 

  36. Douglas, J.E., Rabinovitch, B.S. and Looney, F.S., J. Chem. Phys., 23 (1955) 315.

    Google Scholar 

  37. Tai, J.C. and Allinger, N.L., J. Am. Chem. Soc., 110 (1988) 2050.

    Google Scholar 

  38. Lehn, J.M., Munsch, B. and Millie, P., Theor. Chim. Acta, 16 (1970) 351.

    Google Scholar 

  39. Carreira, L.A. and Towns, T.G., J. Mol. Struct., 41 (1977) 1.

    Google Scholar 

  40. Bastiansen, O. and Traetteberg, M., Tetrahedron, 17 (1962) 147.

    Google Scholar 

  41. Carreira, L.A. and Towns, T.G., J. Chem. Phys., 63 (1975) 5283.

    Google Scholar 

  42. Andersson, S., Carter, R.E. and Drakenberg, T., Acta Chem. Scand., B38 (1984) 579.

    Google Scholar 

  43. Wiberg, K.B. and Rosenberg, R.E., J. Am. Chem. Soc., 112 (1990) 1509.

    Google Scholar 

  44. Carreira, L.A., J. Chem. Phys., 62 (1975) 3851.

    Google Scholar 

  45. Traetteberg, M., Frantsen, E.B., Mijlhoff, F.C. and Hoekstra, A., J. Mol. Struct., 26 (1975) 57.

    Google Scholar 

  46. Bordner, J., Parker, R.G. and Standford, R.H.Jr., Acta Crystallogr., B 28 (1972) 1069.

    Google Scholar 

  47. Curtiss, L., Frurip, D. and Blander, M., J. Chem. Phys., 71 (1979) 2703.

    Google Scholar 

  48. Dyke, T. and Muenter, J., J. Chem. Phys., 60 (1974) 2929.

    Google Scholar 

  49. Mathews, D.M. and Sheets, R.W., J. Chem. Soc. A (1969) 2203.

  50. Abraham, R.J. and Smith, P.E., Nucleic Acid Res., 16 (1988) 2639.

    Google Scholar 

  51. Abraham, R.J., Griffiths, L. and Loftus, P., J. Comput. Chem., 3 (1982) 407.

    Google Scholar 

  52. Abraham, R.J. and Smith, P.E., J. Comput. Chem., 9 (1988) 288.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morley, S.D., Abraham, R.J., Haworth, I.S. et al. COSMIC(90): An improved molecular mechanics treatment of hydrocarbons and conjugated systems. J Computer-Aided Mol Des 5, 475–496 (1991). https://doi.org/10.1007/BF00125666

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00125666

Key words

Navigation