Abstract
The view graph of a surface is a planar graph whose nodes are the stable views (projections) of the surface and whose edges represent transitional views of codimension one. The space of all directions of orthogonal projection can be identified with the projective plane. The set of “bad” projection directions, associated with the degenerate views of positive codimension, forms a graph in the projective plane (the view bifurcation set). This graph is dual to the view graph and divides the projective plane into a certain number of connected regions whose representatives are the nodes of the view graph. We assume that the projected surface is nonsingular and parameterized by polynomials of degree d. We present an estimate for the number of nodes in the view graph in terms of d and describe symbolic algorithms for computing the bifurcation set and the view graph of a surface from a parametrization.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Arnol'd, V.I. 1983. Singularities of systems of rays. Russian Math. Surveys 38: 87–176.
Arnon, D.S., Collins, G.E., and McCallum, S. 1984. Cylindrical algebraic decomposition I: the basic algorithm and II: an adjacency algorithm for the plane. SIAM J. Comput. 13: 865–877 and 878–889.
Banchoff, T., Gaffney, T., and McCrory, C. 1982. Cusps of Gauss Mappings. Pitman Publishing: Boston-London-Melbourne.
Besl, P.J., and Jain, R.C. 1985. Three-dimensional object recognition. ACM Comput. Surveys 17: 75–145.
Bochnak, J., Coste, M., and Roy, M.-F. 1987. Géométrie algébrique réele. Springer Verlag: Berlin-Heidelberg.
Buchberger, B. 1969. Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems. Aequationes Math. 4: 374–383.
Buchberger, B. 1985. Gröbner bases: an algorithmic method in polynomial ideal theory. In Multidimensional Systems Theory, N.K.Bose (ed.). Reidel: Dordrecht-Boston-Lancaster, pp. 184–232.
Callahan, J., and Weiss, R. 1985. A model for describing surface shape. Proc. IEEE Conf. Comput. Vision Patt. Recogn., San Francisco, pp. 240–245.
Chakravarty, I., and Freeman, H. 1982. Characteristic views as a basis for three-dimensional object recogniton. Proc. SPIE 336: 37–45.
Chin, R.T., and Dyer, C.R. 1986. Model-based recognition in robot vision. ACM Comput. Surveys 18: 67–108.
Collins, G.E. 1975. Quantifier elimination for real closed fields by cylindrical algebraic decomposition. Proc. 2nd GI Conf. Automata Theory and Formal Languages. Springer LNCS 33, Springer Verlag: Berlin-Heidelberg-New York. pp. 134–183.
Collins, G.E., and Loos, R.. 1982. Real zeros of polynomials. In Computing, Supplementum 4 Springer-Verlag: Wien-New York.
Eggert, D., and Bowyer, K. 1989. Computing the orthogonal projection aspect graph of solids of revolution. Proc. IEEE Workshop on Interpretation of 3-D Scenes. New York, pp. 102–108.
Fekete, G., and Davis, L.S. 1984. Property spheres: a new representation for 3-D recognition. Proc. IEEE Workshop on Computer Vision: Representation and Control. New York, pp. 192–201.
Gaffney, T., and Ruas, M. 1977. Unpublished work. See also T. Gaffney, The structure of TA(f), classification, and an application to differential geometry. Proc. Symposia in Pure Math. 40:1. American Mathematical Society, Providence, RI 1983, pp. 409–427.
Giblin, P.J. 1977. Graphs, surfaces, and homology. Chapman and Hall: London.
Gigus, Z., and Malik, J. 1988. Computing the aspect graph for line drawings of polyhedral objects. Proc. (IEEE) Intern. Conf. Robotics and Automation, Philadelphia, pp. 1560–1566.
Gigus, Z., Canny, J., and Seidel, R. 1988. Efficiently computing and representing aspect graphs of polyhedral objects. Proc. 2nd Internat. Conf. Computer Vision, Florida, pp. 30–39.
Goad, C. 1983. Special purpose automatic programming for 3-D model-based vision. Proc. DARPA Image Understanding Workshop, Arlington, VA, pp. 94–104.
Greenberg, M.J., and Harper, J.R., 1981. Algebraic topology: a first course. Benjamin-Cummings Publishing: Reading, MA.
Grimson, W.E.L., and Lozano-Pérez, T. 1984. Model-based recognition and localization from sparse range or tactile data. Intern. J. Robotics Res. 3: 3–35.
Kergosien, Y.L. 1981. La famille des projections orthogonales d'une surface et ses singularités. C. R. Acad. Sci. Paris 292: 929–932.
Kergosien, Y.L., and Thom, R. 1980. Sur les points paraboliques des surfaces. C.R. Acad. Sci. Paris 290: 705–710.
Klein, F. 1922. The mathematical theory of the top. In Gesammelte mathematische Abhandlungen, Zweiter Band. Springer Verlag: Berlin, pp. 618–654.
Koenderink, J.J. 1986. The internal representation of solid shape based on topological properties of the apparent contour. Image Understanding 1985/86, W.Richards and S.Ullman (eds.). Ablex Publishing: Norwood, NJ, pp. 257–286.
Koenderink, J.J., and vanDoorn, A.J. 1976. The singularities of the visual mapping. Biological Cybernetics 24: 51–59.
Kriegman, D.J., and Ponce, J. 1990. Computing exact aspect graphs of curved objects: solids of revolution. Intern. J. Comput. Vision 5: 119–135.
Malik, J. 1987. Interpreting line drawings of curved objects. Intern. J. Comput. Vision 1: 73–103.
MAPLE Reference Manual, 5th ed., 1988, Symbolic computation group, Dept. of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
Mather, J.N. 1973. Genetic projections. Ann. of Mathematics 98: 226–245.
Milnor, J. 1964. On the Betti numbers of real varieties. Proc. Amer. Math. Soc. 15: 275–280.
Mishra, B., and Yap, C.K. 1989. Notes on Gröbner bases. Information Sciences 48: 219–252.
Murray, D.W. 1988. Strategies in object recognition. Preprint.
Prill, D. 1986. On approximations and incidence in cylindrical algebraic decomposition. SIAM J. Comput. 15: 972–993.
Rieger, J.H. 1987a. Families of maps from the plane to the plane. J. London Math. Soc. 36: 351–369.
Rieger, J.H. 1987b. On the classification of views of piecewise smooth objects. Image Vision Comput. 5: 91–97.
Rieger, J.H. 1990a. The geometry of view space of opaque objects bounded by smooth surfaces. Artificial Intelligence 44: 1–40.
Rieger, J.H. 1990b. Versal topological stratification and the bifurcation geometry of map-germs of the plane. Math. Proc. Cambridge Philos. Soc. 107: 127–147.
Stewman, J., and Bowyer, K. 1988. Creating the perspective projection aspect graph of polyhedral objects. Proc. 2nd Interm. Conf. Comput. Vision, Tampa, FL, pp. 494–500.
Stiefvater, T. 1989. Ein symbolischer Algorithmus zur Berechnung von semialgebraischen Zellen in der Ebene. Studienarbeit, Fakultät für Informatik: Universität Karlsruhe, F.R.G.
Tari, F. 1990. Projections of piecewise-smooth surface. Preprint. University of Liverpool, England.
Trinks, W. 1978. Über B. Buchbergers Verfahren, Systeme algebraischer Gleichungen zu lösen. J. Number Theory 10: 475–488.
van derWaerden, B.L. 1939. Einführung in die algebraische Geometrie. Springer Verlag: Berlin.
Walker, R.J. 1950. Algebraic curves. Princeton University Press: Princeton, NJ; Springer Verlag: Berlin, 1978.
Whitney, H. 1955. On singularities of mappings of Euclidean spaces. I. Mappings of the plane into the plane. Ann. of Mathematics 62: 374–410.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Rieger, J.H. Global bifurcation sets and stable projections of nonsingular algebraic surfaces. Int J Comput Vision 7, 171–194 (1992). https://doi.org/10.1007/BF00126392
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF00126392