Skip to main content
Log in

Global bifurcation sets and stable projections of nonsingular algebraic surfaces

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

The view graph of a surface is a planar graph whose nodes are the stable views (projections) of the surface and whose edges represent transitional views of codimension one. The space of all directions of orthogonal projection can be identified with the projective plane. The set of “bad” projection directions, associated with the degenerate views of positive codimension, forms a graph in the projective plane (the view bifurcation set). This graph is dual to the view graph and divides the projective plane into a certain number of connected regions whose representatives are the nodes of the view graph. We assume that the projected surface is nonsingular and parameterized by polynomials of degree d. We present an estimate for the number of nodes in the view graph in terms of d and describe symbolic algorithms for computing the bifurcation set and the view graph of a surface from a parametrization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnol'd, V.I. 1983. Singularities of systems of rays. Russian Math. Surveys 38: 87–176.

    Google Scholar 

  • Arnon, D.S., Collins, G.E., and McCallum, S. 1984. Cylindrical algebraic decomposition I: the basic algorithm and II: an adjacency algorithm for the plane. SIAM J. Comput. 13: 865–877 and 878–889.

    Google Scholar 

  • Banchoff, T., Gaffney, T., and McCrory, C. 1982. Cusps of Gauss Mappings. Pitman Publishing: Boston-London-Melbourne.

    Google Scholar 

  • Besl, P.J., and Jain, R.C. 1985. Three-dimensional object recognition. ACM Comput. Surveys 17: 75–145.

    Google Scholar 

  • Bochnak, J., Coste, M., and Roy, M.-F. 1987. Géométrie algébrique réele. Springer Verlag: Berlin-Heidelberg.

    Google Scholar 

  • Buchberger, B. 1969. Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems. Aequationes Math. 4: 374–383.

    Google Scholar 

  • Buchberger, B. 1985. Gröbner bases: an algorithmic method in polynomial ideal theory. In Multidimensional Systems Theory, N.K.Bose (ed.). Reidel: Dordrecht-Boston-Lancaster, pp. 184–232.

    Google Scholar 

  • Callahan, J., and Weiss, R. 1985. A model for describing surface shape. Proc. IEEE Conf. Comput. Vision Patt. Recogn., San Francisco, pp. 240–245.

  • Chakravarty, I., and Freeman, H. 1982. Characteristic views as a basis for three-dimensional object recogniton. Proc. SPIE 336: 37–45.

    Google Scholar 

  • Chin, R.T., and Dyer, C.R. 1986. Model-based recognition in robot vision. ACM Comput. Surveys 18: 67–108.

    Google Scholar 

  • Collins, G.E. 1975. Quantifier elimination for real closed fields by cylindrical algebraic decomposition. Proc. 2nd GI Conf. Automata Theory and Formal Languages. Springer LNCS 33, Springer Verlag: Berlin-Heidelberg-New York. pp. 134–183.

    Google Scholar 

  • Collins, G.E., and Loos, R.. 1982. Real zeros of polynomials. In Computing, Supplementum 4 Springer-Verlag: Wien-New York.

    Google Scholar 

  • Eggert, D., and Bowyer, K. 1989. Computing the orthogonal projection aspect graph of solids of revolution. Proc. IEEE Workshop on Interpretation of 3-D Scenes. New York, pp. 102–108.

  • Fekete, G., and Davis, L.S. 1984. Property spheres: a new representation for 3-D recognition. Proc. IEEE Workshop on Computer Vision: Representation and Control. New York, pp. 192–201.

  • Gaffney, T., and Ruas, M. 1977. Unpublished work. See also T. Gaffney, The structure of TA(f), classification, and an application to differential geometry. Proc. Symposia in Pure Math. 40:1. American Mathematical Society, Providence, RI 1983, pp. 409–427.

    Google Scholar 

  • Giblin, P.J. 1977. Graphs, surfaces, and homology. Chapman and Hall: London.

    Google Scholar 

  • Gigus, Z., and Malik, J. 1988. Computing the aspect graph for line drawings of polyhedral objects. Proc. (IEEE) Intern. Conf. Robotics and Automation, Philadelphia, pp. 1560–1566.

  • Gigus, Z., Canny, J., and Seidel, R. 1988. Efficiently computing and representing aspect graphs of polyhedral objects. Proc. 2nd Internat. Conf. Computer Vision, Florida, pp. 30–39.

  • Goad, C. 1983. Special purpose automatic programming for 3-D model-based vision. Proc. DARPA Image Understanding Workshop, Arlington, VA, pp. 94–104.

  • Greenberg, M.J., and Harper, J.R., 1981. Algebraic topology: a first course. Benjamin-Cummings Publishing: Reading, MA.

    Google Scholar 

  • Grimson, W.E.L., and Lozano-Pérez, T. 1984. Model-based recognition and localization from sparse range or tactile data. Intern. J. Robotics Res. 3: 3–35.

    Google Scholar 

  • Kergosien, Y.L. 1981. La famille des projections orthogonales d'une surface et ses singularités. C. R. Acad. Sci. Paris 292: 929–932.

    Google Scholar 

  • Kergosien, Y.L., and Thom, R. 1980. Sur les points paraboliques des surfaces. C.R. Acad. Sci. Paris 290: 705–710.

    Google Scholar 

  • Klein, F. 1922. The mathematical theory of the top. In Gesammelte mathematische Abhandlungen, Zweiter Band. Springer Verlag: Berlin, pp. 618–654.

    Google Scholar 

  • Koenderink, J.J. 1986. The internal representation of solid shape based on topological properties of the apparent contour. Image Understanding 1985/86, W.Richards and S.Ullman (eds.). Ablex Publishing: Norwood, NJ, pp. 257–286.

    Google Scholar 

  • Koenderink, J.J., and vanDoorn, A.J. 1976. The singularities of the visual mapping. Biological Cybernetics 24: 51–59.

    Google Scholar 

  • Kriegman, D.J., and Ponce, J. 1990. Computing exact aspect graphs of curved objects: solids of revolution. Intern. J. Comput. Vision 5: 119–135.

    Google Scholar 

  • Malik, J. 1987. Interpreting line drawings of curved objects. Intern. J. Comput. Vision 1: 73–103.

    Google Scholar 

  • MAPLE Reference Manual, 5th ed., 1988, Symbolic computation group, Dept. of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.

  • Mather, J.N. 1973. Genetic projections. Ann. of Mathematics 98: 226–245.

    Google Scholar 

  • Milnor, J. 1964. On the Betti numbers of real varieties. Proc. Amer. Math. Soc. 15: 275–280.

    Google Scholar 

  • Mishra, B., and Yap, C.K. 1989. Notes on Gröbner bases. Information Sciences 48: 219–252.

    Google Scholar 

  • Murray, D.W. 1988. Strategies in object recognition. Preprint.

  • Prill, D. 1986. On approximations and incidence in cylindrical algebraic decomposition. SIAM J. Comput. 15: 972–993.

    Google Scholar 

  • Rieger, J.H. 1987a. Families of maps from the plane to the plane. J. London Math. Soc. 36: 351–369.

    Google Scholar 

  • Rieger, J.H. 1987b. On the classification of views of piecewise smooth objects. Image Vision Comput. 5: 91–97.

    Google Scholar 

  • Rieger, J.H. 1990a. The geometry of view space of opaque objects bounded by smooth surfaces. Artificial Intelligence 44: 1–40.

    Google Scholar 

  • Rieger, J.H. 1990b. Versal topological stratification and the bifurcation geometry of map-germs of the plane. Math. Proc. Cambridge Philos. Soc. 107: 127–147.

    Google Scholar 

  • Stewman, J., and Bowyer, K. 1988. Creating the perspective projection aspect graph of polyhedral objects. Proc. 2nd Interm. Conf. Comput. Vision, Tampa, FL, pp. 494–500.

  • Stiefvater, T. 1989. Ein symbolischer Algorithmus zur Berechnung von semialgebraischen Zellen in der Ebene. Studienarbeit, Fakultät für Informatik: Universität Karlsruhe, F.R.G.

    Google Scholar 

  • Tari, F. 1990. Projections of piecewise-smooth surface. Preprint. University of Liverpool, England.

    Google Scholar 

  • Trinks, W. 1978. Über B. Buchbergers Verfahren, Systeme algebraischer Gleichungen zu lösen. J. Number Theory 10: 475–488.

    Google Scholar 

  • van derWaerden, B.L. 1939. Einführung in die algebraische Geometrie. Springer Verlag: Berlin.

    Google Scholar 

  • Walker, R.J. 1950. Algebraic curves. Princeton University Press: Princeton, NJ; Springer Verlag: Berlin, 1978.

    Google Scholar 

  • Whitney, H. 1955. On singularities of mappings of Euclidean spaces. I. Mappings of the plane into the plane. Ann. of Mathematics 62: 374–410.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rieger, J.H. Global bifurcation sets and stable projections of nonsingular algebraic surfaces. Int J Comput Vision 7, 171–194 (1992). https://doi.org/10.1007/BF00126392

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00126392

Keywords

Navigation