Skip to main content
Log in

Towards intelligent autonomous control systems: Architecture and fundamental issues

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

Autonomous control systems are designed to perform well under significant uncertainties in the system and environment for extended periods of time, and they must be able to compensate for system failures without external intervention. Intelligent autonomous control systems use techniques from the field of artificial intelligence to achieve this autonomy. Such control systems evolve from conventional control systems by adding intelligent components, and their development requires interdisciplinary research. A hierarchical functional intelligent autonomous control architecture is introduced here and its functions are described in detail. The fundamental issues in autonomous control system modelling and analysis are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albus, J., et al., Theory and practice of intelligent control, Proc. 23rd IEEE COMPCON, pp. 19–39 (1981).

  2. Albus, J.S., et al., Hierarchical control of intelligent machines applied to space station telerobotics, Proc. Space Telerobotics Workshop, pp. 155–166 (1988).

  3. Antsaklis, P.J. and Passino, K.M., Autonomous control systems: Architecture and concepts for future space vehicles, Final report, Jet Propulsion Laboratory Contract, Oct. 1987.

  4. Antsaklis, P.J., Passino, K.M., and Wang, S.J., Autonomous control systems: Architecture and fundamental issues, Proc. Amer. Control Conference, Atlanta, pp. 602–607 (1988).

  5. Astrom, K.J. et al., Expert control, Automatica 22, 277–286 (1986).

    Google Scholar 

  6. Atkinson, D.J., Telerobot task planning and reasoning: Introduction to JPL AI research, Proc. Space Telerobotics Workshop, pp. 339–350 (1988).

  7. Balaram, J., et al., Run time control architecture for the JPL telerobot, Proc. Space Telerobotics Workshop, pp. 211–222, (1987).

  8. Bhatt, R., et al., A real time pilot for an autonomous robot, Proc. IEEE Internat. Symp. Intelligent Control, pp. 135–139 (1987).

  9. Blank, G., Responsive system control using register vector grammar, Proc. IEEE Internat. Symp. Intelligent Control, pp. 461–466 (1987).

  10. Charniak, E. and McDermott, D., Introduction to Artificial Intelligence, Addison Wesley, Reading, Mass. (1985).

    Google Scholar 

  11. Crosscope, J. and Bonnell, R., An integrated intelligent controller employing both conceptual and procedural knowledge, Proc. IEEE Internat. Symp. Intelligent Control, pp. 416–422 (1987).

  12. Cruz, J.B. and Stubberud, A.R., Knowledge based approach to multiple control coordination in complex systems, Proc. IEEE Internat. Symp. Intelligent Control, pp. 50–53 (1987).

  13. DeJong, K., Intelligent control: Integrating AI and control theory, Proc. IEEE Trends and Applications 1983, pp. 158–161 (1983).

  14. Despain, A.M. and Patt, Y.N. Aquarius—a high performance computing system for sysmbolic/numeric applications, Proc. COMPCON S'85, pp. 376–382 (1985).

  15. Dudziak, M.J., et al., IVC: An intelligent vehicle controller with real-time strategic replanning, Proc. IEEE Internat. Symp. Intelligent Control, pp. 145–152 (1987).

  16. Dudziak, M.J., SOLON: An autonomous vehicle mission planner, Proc. Space Telerobotics Workshop, pp. 289–302 (1987).

  17. Farsaie, A., et al., Intelligent controllers for an autonomous system, Proc. IEEE Internat. Symp. Intelligent Control, pp. 154–158 (1987).

  18. Findeisen, W., et al., Control and Coordination in Hierarchical Systems, Wiley, New York (1980).

    Google Scholar 

  19. Fiorio, G., Integration of multi-hierarchy control architectures for complex systems, Proc. IEEE Internat. Symp. Intelligent Control, pp. 71–79 (1987).

  20. Firschein, O., et al., Artificial Intelligence for Space Station Automation, Noyes, New Jersey (1986).

    Google Scholar 

  21. Freidland, P. and Lum, H., Building intelligent systems: Artificial intelligence research at NASA Ames Research Center, Proc. Space Telerobotics Workshop, pp. 19–26 (1988).

  22. Fu, K.S., Learning control systems and intelligent control systems: An intersection of artificial intelligence and automatic control, IEEE Trans. Automatic Control, pp. 70–72 (1971).

  23. Gartrell, C.F., et al., The use of expert systems for adaptive control of large space stuctures, Proc. AIAA Guidance Natigation and Control Conf., pp. 376–385 (1985).

  24. Gevarter, W.B., Artificial Intelligence, Noyes, NJ (1984).

    Google Scholar 

  25. Graglia, P. and Meystel, A., Planning minimum time trajectory in the traversability space of a robot, Proc. IEEE Internat. Symp. Intelligent Control, pp. 82–87 (1987).

  26. Guha, A. and Dudziak, M., Knowledge based controllers for autonomous system, Proc. IEEE Workshop Intelligent Control, pp. 134–138 (1985).

  27. Handelman, D.A. and Stengel, R.F., Combining qualitative and quantitative reasoning in aircraft failure diagnosis, AIAA Guidance Navigation and Control Conf., pp. 366–375 (1985).

  28. Hawker, J. and Nagel, R., World models in intelligent control systems, Proc. IEEE Internat. Symp. Intelligent Control, pp. 482–488 (1987).

  29. Hodgson, J., Structures for intelligent systems, Proc. IEEE Internat. Symp. Intelligent Control, pp. 348–353 (1987).

  30. Jenkins, L., Space telerobotic systems: Applications and concepts, Proc. Space Telerobotics Workshop, pp. 29–34 (1988).

  31. Kitzmiller, C.T. and Kowalik, J.S., Coupling symbolic and numeric computing in KB systems, AI Magazine 18, 85–90 (1987).

    Google Scholar 

  32. Knight, J.F. and Passino, K.M., Decidability for Temporal Logic in Control Theory, Proc. 25th Allerton Conf., pp. 335–344 (1987).

  33. Krogh, B., Controlled Petri nets and maximally permissive feedback logic, Proc. 25th Allerton Conf., pp. 317–326 (1987).

  34. Lutz, P., Autonomous mobile robots in industrial production environment, in L.O.Hertzgerger and F.C.A. Groen (eds.) Intelligent Autonomous Systems, North-Holland, NY (1987) (Proc. of an International Conference in Amsterdam, Dec. 1986).

    Google Scholar 

  35. Mendel, J. and Zapalac, J., The application of techniques of artificial intelligence to control system design, in Advances in Control Systems C.T. Leondes (ed.), Academic Press, NY (1968).

    Google Scholar 

  36. Mesarovic, M., Macko, D. and Takahara, Y., Theory of Hierarchical, Multilevel, Systems, Academic Press, NY (1970).

    Google Scholar 

  37. Meystel, A., Intelligent control: Issues and perspectives, Proc. IEEE Workshop Intelligent Control, pp. 1–15 (1985).

  38. Meystel, A., Nested hierarchical controlled for intelligent mobile autonomous system, in L.O. Hertzgerger and F.C.A. Groen (eds.), Intelligent Autonomous Systems, North Holland, NY (1987) (Proc. of an International Conference in Amsterdam, Dec. 1986).

    Google Scholar 

  39. Meystel, A., Planning/control architectures for master dependent autonomous systems with nonhomogeneous knowledge representation, Proc. IEEE Internat. Symp. Intelligent Control, pp. 31–41 (1987).

  40. Meystel, A., Nested hierarchical controller with partial autonomy, Proc. Space Telerobotics Workshop, pp. 251–270 (1988).

  41. Moizer, A. and Pagurek, B., An onboard navigation system for autonomous underwater vehicles, in L.O. Hertzgerger and F.C.A. Groen (eds.), Intelligent Autonomous Systems, North Holland, NY (1987) (Proc. of an International Conference in Amsterdam, Dec. 1986.)

    Google Scholar 

  42. Ostroff, J.S., Real time computer control of discrete systems modelled by extended state machines: A temporal logic approach, PhD dissertation, Report No. 8618, Dept. of Elect. Eng., University of Toronto, Jan. 1987.

  43. Passino, K.M., Restructurable controls and artificial intelligence, McDonnell Aircraft Internal Report, IR-0392, April 1986.

  44. Passino, K.M. and Antsaklis, P.J., Restructurable controls study: An artificial intelligence approach to the fault detection and identification problem, Final Report, McDonnell Douglas Contract, Oct. 1986.

  45. Passino, K.M. and Antsaklis, P.J., Fault detection and identification in an intelligent restructurable controller, Journal of Intelligent and Robotic Systems 1, 145–161 (1988).

    Google Scholar 

  46. Passino, K.M. and Antsaklis, P.J., Artificial intelligence planning problems in a Petri net framework, Proc. Amer. Control Conference, pp. 626–631 (1988).

  47. Pearson, G., Mission planning for autonomous systems, Proc. Space Telerobotics Workshop, pp. 303–306 (1988).

  48. Raulefs, P. and Thorndyke, P.W., An architecture for heuristic control of real time processes, Proc. Space Telerobotics Workshop, pp. 139–148 (1988).

  49. Saridis, G.N., Toward the realization of intelligent controls, Proc. IEEE 67, 1115–1133 (1979).

    Google Scholar 

  50. Saridis, G., Intelligent controls for advanced automated processes, Proc. Automated Decision Making and Problem Solving Conf., NASA CP-2180, May 1980.

  51. Saridis, G.N., Intelligent robot control, IEEE Trans. Automatic Control, AC-28, 547–556 (1983).

    Google Scholar 

  52. Saridis, G.N., Foundations of the theory of intelligent controls, Proc. IEEE Workshop Intelligent Control, pp. 23–28 (1985).

  53. Saridis, G.N., Knowledge implementation: structures of intelligent control systems, Proc. IEEE Internat. Symp. Intelligent Control, pp. 9–17 (1987).

  54. Saridis, G.N. and Valavanis, K.P., Software and hardware for intelligent robots, Proc. Space Telerobotics Workshop, pp. 241–250 (1988).

  55. Schenker, P.S., Program objectives and technology outreach, Proc. Space Telerobotics Workshop, pp. 3–18 (1988).

  56. Shapiro, S.C. (ed.), Encyclopedia of Artificial Intelligence, Wiley, NY (1987).

    Google Scholar 

  57. Stark, L., Telerobotics: Research needs for evolving space stations, Proc. Space Telerobotics Workshop, pp. 91–94 (1988).

  58. Stengel, R.F., AI theory and reconfigurable flight control systems, Princeton University Report 1664-MAE, June 1984 (see also 1665 by D. Handelman).

  59. Stephanou, H.E., An evidential framework for intelligent control, Proc. IEEE Workshop Intelligent Control, pp. 118–123 (1985).

  60. Thistle, J.G. and Wonham, W.M., Control problems in a temporal logic framework, Int. J. Control 44, 943–976 (1986).

    Google Scholar 

  61. Trankle, T.L., Sheu, P. and Rabin, U.H., Expert system architecture for control system design, Proc. Amer. Control Conference, pp. 1163–1169 (1986).

  62. Turne, P.R., et al., Autonomous systems: Architecture and implementation, Jet Propulsion Laboratories, Report No. JPL D-1656, August 1984.

  63. Valavanis, K.P., A mathematical formulation for the analytical design of intelligent machines. PhD Dissertation, Electrical and Computer Engineering Dept., Rensselaer Polytechnic Institute, Troy NY, Nov. 1986.

  64. Valvanis, K.P. and Saridis, G.N., Architectural models for intelligent machines, Proc. 25th Conf. Decision and Control, Athens, Greece (1986).

  65. Valavanis, K.P. and Saridis, G.N., Information theoretic modelling of intelligent robotic systems, Part I: The organization level, Proc. 26th Conf. Decision and Control, Los Angeles, pp. 619–626 (1987).

  66. Valavanis, K.P. and Saridis, G.N., Information theoretic modelling of intelligent robotic systems, Part II: The coordination and execution levels, Proc. 26th Conf. Decision and Control, Los Angeles, pp. 627–633 (1987).

  67. Villa, A., Hybrid knowledge based/analytical control of uncertain systems, Proc. IEEE Internat. Symp. Intelligent Control, pp. 59–70 (1987).

  68. Waldon, S., et al., Updating and organizing world knowledge for an autonomous control system, Proc. IEEE Internat. Symp. Intelligent Control, pp. 423–430 (1987).

  69. Wolfe, W.J. and Raney, S.D., Distributed intelligence for supervisory control, Proc. Space Telerobotics Workshop, pp. 139–148 (1988).

  70. Wos, L., Automated Reasoning: 33 Basic Research Problems, Prentice Hall, NJ (1988).

    Google Scholar 

  71. Zadeh, L.A., Fuzzy logic, Computer, April 1988, 83–93.

  72. Zeigler, B.P., Knowledge representation from Newton to Minsky and beyond, Journal of Applied Artificial Intelligence 1, 87–107 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antsaklis, P.J., Passino, K.M. & Wang, S.J. Towards intelligent autonomous control systems: Architecture and fundamental issues. J Intell Robot Syst 1, 315–342 (1989). https://doi.org/10.1007/BF00126465

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00126465

Key words

Navigation