Skip to main content
Log in

Shape information from a critical point analysis of calculated electron density maps: Application to DNA-drug systems

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

A computational method is described for mapping the volume within the DNA double helix accessible to the groove-binding antibiotic netropsin. Topological critical point analysis is used to locate maxima in electron density maps reconstructed from crystallographically determined atomic coordinates. The peaks obtained in this way are represented as ellipsoids with axes related to local curvature of the electron density function. Combining the ellipsoids produces a single electron density function which can be probed to estimate effective volumes of the interacting species. Close complementarity between host and ligand in this example shows the method to give a good representation of the electron density function at various resolutions. At the atomic level, the ellipsoid method gives results which are in close agreement with those from the conventional spherical van der Waals approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Connolly, M.L., J. Appl. Crystallogr., 16 (1983) 548.

    Google Scholar 

  2. Del, Carpio, C.A., Takahashi, Y. and Sasaki, S.-I., J. Mol. Graphics, 11 (1993) 23.

    Google Scholar 

  3. Santavy, M. and Kypr, J., J. Mol. Graphics, 2 (1984) 47.

    Google Scholar 

  4. Fortier, S., Castleden, I., Glasgow, J., Conklin, D., Walmsley, C., Leherte, L. and Allen, F.H., Acta Crystallogr., D49 (1993) 168.

    Google Scholar 

  5. Kennard, O. and Hunter, W.N., Angew. Chem., Int. Ed. Engl., 30 (1991) 1254.

    Google Scholar 

  6. Kopka, M.L. and Larsen, T.A., In Propst, C.L. and Perun, T.J. (Eds.) Nucleic Acid Targeted Drug Design, Marcel Dekker, New York, NY, 1992, pp. 302–374.

    Google Scholar 

  7. Saenger, W., Principles of Nucleic Acid Structure, Springer, New York, NY, 1984.

    Google Scholar 

  8. Wang, A.H.-J. and Teng, M.-K., In Bugg, C.E. and Ealick, S.E. (Eds.) Crystallographic and Modelling Methods in Molecular Design, Springer, New York, NY, 1990, pp. 123–150.

    Google Scholar 

  9. Dickerson, R.E., Kopka, M.L. and Pjura, P.E., In Guschlbauer, W. and Saenger, W. (Eds.) DNA-Ligand Interactions: From Drugs to Proteins, Plenum Press, New York, NY, 1987, pp. 45–62.

    Google Scholar 

  10. Lavery, R. and Pullman, B., Int. J. Quantum Chem., 20 (1981) 259.

    Google Scholar 

  11. Bader, R.F.W., Atoms in Molecules, Clarendon Press, Oxford, 1990.

    Google Scholar 

  12. Johnson, C.K., Proceedings of the American Crystallographic Association Meeting 1976, Evanston, IL, Abstr. B1.

  13. Johnson, C.K., Proceedings of the American Crystallographic Association Meeting 1977, Asilomar, CA, Abstr. JQ6.

  14. Johnson, C.K., ORCRIT, The Oak Ridge Critical Point Network Program, Chemistry Division, Oak Ridge National Laboratory, Oak Ridge, TN, 1977.

    Google Scholar 

  15. Hall, S.R. and Stewart, J.M. (Eds.) XTAL 3.0 Users Manual, Universities of Western Australia and Maryland, 1990.

  16. Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M., J. Mol. Biol., 112 (1978) 535.

    Google Scholar 

  17. Berman, H.M., Olson, W.K., Beveridge, D.L., Westbrook, J., Glebin, A., Demeny, T., Hsieh, S.-H., Srinivasan, A.R. and Schneider, B., Biophys. J., 63 (1992) 751.

    Google Scholar 

  18. Drew, H.R., Wing, R.M., Takano, T., Broka, C., Tanaka, S., Itakura, K. and Dickerson, R.E., Proc. Natl. Acad. Sci. USA, 78 (1981) 2179.

    Google Scholar 

  19. Coll, M., Aymami, J., Van der, Marel, G.A., Van, Boom, J.H., Rich, A. and Wang, A.H.-J., Biochemistry, 28 (1989) 310.

    Google Scholar 

  20. Kopka, M.L., Yoon, C., Goodsell, D., Pjura, P. and Dickerson, R.E., J. Mol. Biol., 183 (1985) 553.

    Google Scholar 

  21. Derouane, E.G., Leherte, L., Vercauteren, D.P., Lucas, A.A. and André, J.-M., J. Catalysis, 119 (1989) 266.

    Google Scholar 

  22. Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R. and Ferrin, T.E., J. Mol. Biol., 161 (1982) 269.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leherte, L., Allen, F.H. Shape information from a critical point analysis of calculated electron density maps: Application to DNA-drug systems. J Computer-Aided Mol Des 8, 257–272 (1994). https://doi.org/10.1007/BF00126744

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00126744

Key words

Navigation