Summary
A popular first step in the problem of structure-based, ‘de novo’ molecule design is to identify regions where specific functional groups or chemical entities would be expected to interact strongly. When the three-dimensional structure of the receptor is not available, it may be possible to derive a pharmacophore giving the three-dimensional relationships between such chemical groups. The task then is to design synthetically feasible molecules which not only contain the required groups, but which can also position them in the desired relative orientation. One way to do this is to first link the groups using an acyclic chain. We have investigated the application of the ‘tweak’ algorithm [Shenkin, P.S. et al., Biopolymers, 26 (1987) 2053] for generating families of acyclic linkers. These linking structures can subsequently be ‘braced’ using a ring-joining algorithm [Leach, A.R. and Lewis, R.A., J. Comput. Chem., 15 (1994) 233], giving rise to an even wider variety of molecular skeletons for further studies.
Similar content being viewed by others
References
Protein Data Bank Q. Newslett., 60 (1992) 1.
Kuntz, I.D., Science, 257 (1992) 1078.
Martin, Y.C., J. Med. Chem., 35 (1992) 2145.
Lewis, R.A., Roe, D.C., Huang, C., Ferrin, T.E., Langridge, R. and Kuntz, I.D., J. Mol. Graphics, 10 (1992) 66.
Pearlman, D.A. and Murcko, M.A., J. Comput. Chem., 14 (1993) 1184.
Rotstein, S.H. and Murcko, M.A., J. Comput.-Aided Mol. Design, 7 (1993) 23.
Rotstein, S.H. and Murcko, M.A., J. Med. Chem., 36 (1993) 1700.
Moon, J.B. and Howe, W.J., Protein Struct. Funct. Genet., 11 (1991) 314.
Nishibata, Y. and Itai, A., J. Med. Chem., 36 (1993) 2921.
Böhm, H.-J., J. Comput.-Aided Mol. Design, 6 (1992) 593.
Ho, C.M.W. and Marshall, G.R., J. Comput.-Aided Mol. Design, 7 (1993) 623.
Gillet, V., Johnson, A.P., Mata, P., Sike, S. and Williams, P., J. Comput.-Aided Mol. Design, 7 (1993) 127.
Lewis, R.A., J. Mol. Graphics, 10 (1992) 131.
Lewis, R.A. and Dean, P.M., Proc. R. Soc. London, Ser. B, 236 (1989) 125.
Lewis, R.A. and Dean, P.M., Proc. R. Soc. London, Ser. B, 236 (1989) 141.
Lewis, R.A., J. Comput.-Aided Mol. Design, 4 (1990) 205.
Goodford, P.J., J. Med. Chem., 28 (1985) 849.
Miranker, A. and Karplus, M., Protein Struct. Funct. Genet., 11 (1991) 29.
Dammkoehler, R.A., Karasek, S.F., Shands, E.F.B. and Marshall, G.R., J. Comput.-Aided Mol. Design, 3 (1989) 3.
Leach, A.R. and Lewis, R.A., J. Comput. Chem., 15 (1994) 233.
Gō, N. and Scheraga, H.A., Macromolecules, 3 (1970) 178.
Bruccoleri, R.E. and Karplus, M., Macromolecules, 18 (1985) 2767.
Shenkin, P.S., Yarmush, D.L., Fine, R.M., Wang, H. and Levinthal, C., Biopolymers, 26 (1987) 2053.
Fine, R.M., Wang, H., Shenkin, P.S., Yarmush, D.L. and Levinthal, C., Protein Struct. Funct. Genet., 1 (1986) 342.
Allen, F.H., Kennard, O., Watson, D.G., Brammer, L., Orpen, A.G. and Taylor, R., J. Chem. Soc., Perkin Trans. II, 12 (1987) S1.
Romesburg, H.C., Cluster Analysis for Researchers, Lifetime learning Publications, Belmont, CA, 1984.
Hartigan, J.A., Clustering Algorithms, Wiley, New York, NY, 1975.
Remington, S., Wiegand, G. and Huber, R., J. Mol. Biol., 158 (1982) 111.
Lindsay, R.K., Buchanan, B.G., Feigenbaum, E.A. and Lederberg, I., Applications of Artifical Intelligence for Chemical Inference: The Dendral Project, McGraw-Hill, New York, NY, 1980.
Dolata, D.P., Leach, A.R. and Prout, K., J. Comput.-Aided Mol. Design, 1 (1987) 73.
Leach, A.R. and Prout, K., J. Comput. Chem., 11 (1990) 1193.
Williams, D.H., Cox, J.P.L., Doig, A.J., Gardner, M., Gerhard, U., Kaye, P.T., Lal, A.R., Nicolls, I.A., Salter, C.J. and Mitchell, R.C., J. Am. Chem. Soc., 113 (1991) 7020.
Ferrin, T.E., Huang, C.C., Jarvis, L.E. and Langridge, R., J. Mol. Graphics, 6 (1988) 13.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Leach, A.R., Kilvington, S.R. Automated molecular design: A new fragment-joining algorithm. J Computer-Aided Mol Des 8, 283–298 (1994). https://doi.org/10.1007/BF00126746
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF00126746