Skip to main content
Log in

Automated molecular design: A new fragment-joining algorithm

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

A popular first step in the problem of structure-based, ‘de novo’ molecule design is to identify regions where specific functional groups or chemical entities would be expected to interact strongly. When the three-dimensional structure of the receptor is not available, it may be possible to derive a pharmacophore giving the three-dimensional relationships between such chemical groups. The task then is to design synthetically feasible molecules which not only contain the required groups, but which can also position them in the desired relative orientation. One way to do this is to first link the groups using an acyclic chain. We have investigated the application of the ‘tweak’ algorithm [Shenkin, P.S. et al., Biopolymers, 26 (1987) 2053] for generating families of acyclic linkers. These linking structures can subsequently be ‘braced’ using a ring-joining algorithm [Leach, A.R. and Lewis, R.A., J. Comput. Chem., 15 (1994) 233], giving rise to an even wider variety of molecular skeletons for further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Protein Data Bank Q. Newslett., 60 (1992) 1.

    Google Scholar 

  2. Kuntz, I.D., Science, 257 (1992) 1078.

    Google Scholar 

  3. Martin, Y.C., J. Med. Chem., 35 (1992) 2145.

    Google Scholar 

  4. Lewis, R.A., Roe, D.C., Huang, C., Ferrin, T.E., Langridge, R. and Kuntz, I.D., J. Mol. Graphics, 10 (1992) 66.

    Google Scholar 

  5. Pearlman, D.A. and Murcko, M.A., J. Comput. Chem., 14 (1993) 1184.

    Google Scholar 

  6. Rotstein, S.H. and Murcko, M.A., J. Comput.-Aided Mol. Design, 7 (1993) 23.

    Google Scholar 

  7. Rotstein, S.H. and Murcko, M.A., J. Med. Chem., 36 (1993) 1700.

    Google Scholar 

  8. Moon, J.B. and Howe, W.J., Protein Struct. Funct. Genet., 11 (1991) 314.

    Google Scholar 

  9. Nishibata, Y. and Itai, A., J. Med. Chem., 36 (1993) 2921.

    Google Scholar 

  10. Böhm, H.-J., J. Comput.-Aided Mol. Design, 6 (1992) 593.

    Google Scholar 

  11. Ho, C.M.W. and Marshall, G.R., J. Comput.-Aided Mol. Design, 7 (1993) 623.

    Google Scholar 

  12. Gillet, V., Johnson, A.P., Mata, P., Sike, S. and Williams, P., J. Comput.-Aided Mol. Design, 7 (1993) 127.

    Google Scholar 

  13. Lewis, R.A., J. Mol. Graphics, 10 (1992) 131.

    Google Scholar 

  14. Lewis, R.A. and Dean, P.M., Proc. R. Soc. London, Ser. B, 236 (1989) 125.

    Google Scholar 

  15. Lewis, R.A. and Dean, P.M., Proc. R. Soc. London, Ser. B, 236 (1989) 141.

    Google Scholar 

  16. Lewis, R.A., J. Comput.-Aided Mol. Design, 4 (1990) 205.

    Google Scholar 

  17. Goodford, P.J., J. Med. Chem., 28 (1985) 849.

    Google Scholar 

  18. Miranker, A. and Karplus, M., Protein Struct. Funct. Genet., 11 (1991) 29.

    Google Scholar 

  19. Dammkoehler, R.A., Karasek, S.F., Shands, E.F.B. and Marshall, G.R., J. Comput.-Aided Mol. Design, 3 (1989) 3.

    Google Scholar 

  20. Leach, A.R. and Lewis, R.A., J. Comput. Chem., 15 (1994) 233.

    Google Scholar 

  21. Gō, N. and Scheraga, H.A., Macromolecules, 3 (1970) 178.

    Google Scholar 

  22. Bruccoleri, R.E. and Karplus, M., Macromolecules, 18 (1985) 2767.

    Google Scholar 

  23. Shenkin, P.S., Yarmush, D.L., Fine, R.M., Wang, H. and Levinthal, C., Biopolymers, 26 (1987) 2053.

    Google Scholar 

  24. Fine, R.M., Wang, H., Shenkin, P.S., Yarmush, D.L. and Levinthal, C., Protein Struct. Funct. Genet., 1 (1986) 342.

    Google Scholar 

  25. Allen, F.H., Kennard, O., Watson, D.G., Brammer, L., Orpen, A.G. and Taylor, R., J. Chem. Soc., Perkin Trans. II, 12 (1987) S1.

  26. Romesburg, H.C., Cluster Analysis for Researchers, Lifetime learning Publications, Belmont, CA, 1984.

    Google Scholar 

  27. Hartigan, J.A., Clustering Algorithms, Wiley, New York, NY, 1975.

    Google Scholar 

  28. Remington, S., Wiegand, G. and Huber, R., J. Mol. Biol., 158 (1982) 111.

    Google Scholar 

  29. Lindsay, R.K., Buchanan, B.G., Feigenbaum, E.A. and Lederberg, I., Applications of Artifical Intelligence for Chemical Inference: The Dendral Project, McGraw-Hill, New York, NY, 1980.

    Google Scholar 

  30. Dolata, D.P., Leach, A.R. and Prout, K., J. Comput.-Aided Mol. Design, 1 (1987) 73.

    Google Scholar 

  31. Leach, A.R. and Prout, K., J. Comput. Chem., 11 (1990) 1193.

    Google Scholar 

  32. Williams, D.H., Cox, J.P.L., Doig, A.J., Gardner, M., Gerhard, U., Kaye, P.T., Lal, A.R., Nicolls, I.A., Salter, C.J. and Mitchell, R.C., J. Am. Chem. Soc., 113 (1991) 7020.

    Google Scholar 

  33. Ferrin, T.E., Huang, C.C., Jarvis, L.E. and Langridge, R., J. Mol. Graphics, 6 (1988) 13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leach, A.R., Kilvington, S.R. Automated molecular design: A new fragment-joining algorithm. J Computer-Aided Mol Des 8, 283–298 (1994). https://doi.org/10.1007/BF00126746

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00126746

Key words

Navigation