Skip to main content

Advertisement

Log in

A tabu search heuristic using genetic diversification for the clustered traveling salesman problem

  • Published:
Journal of Heuristics Aims and scope Submit manuscript

Abstract

The clustered traveling salesman problem is an extension of the classical traveling salesman problem where the set of vertices is partitioned into clusters. The objective is to find a least cost Hamiltonian cycle such that the vertices of each cluster are visited contiguously and the clusters are visited in a prespecified order. A tabu search heuristic is proposed to solve this problem. This algorithm periodically restarts its search by merging two elite solutions to form a new starting solution (in a manner reminiscent of genetic algorithms). Computational results are reported on sets of Euclidean problems with different characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Braun, H. (1991). “On Solving Travelling Salesman Problems by Genetic Algorithms.” In H. P.Schwefel and R.Manner (eds.),Parallel Problem-Solving from Nature,Lecture Notes in Computer Science 496, pp. 129–133, Berlin: Springer-Verlag.

    Google Scholar 

  • Chisman, J. A. (1975). “The Clustered Traveling Salesman Problem,”Computers & Operations Research 2, 115–119.

    Google Scholar 

  • Croes, G. (1958). “A Method for Solving Traveling Salesman Problems,”Operations Research 6, 791–812.

    Google Scholar 

  • Duhamel, C., J. Y. Potvin, and J. M. Rousseau. (1994). “A Tabu Search Heuristic for the Vehicle Routing Problem with Backhauls and Time Windows,” Technical Report CRT-94-51, Centre de recherche sur les transports, Université de Montréal.

  • Gendreau, M., A.Hertz, and G.Laporte. (1992). “New Insertion and Postoptimization Procedures for the Traveling Salesman Problem,”Operations Research 40, 1086–1094.

    Google Scholar 

  • Gendreau, M., G. Laporte, and J. Y. Potvin. (1994). “Heuristics for the Clustered Traveling Salesman Problem” Technical Report CRT-94-54, Centre de recherche sur les transports, Université de Montréal. Forthcoming inCombinatorial Optimization.

  • Glover, F. (1986). “Future Paths for Integer Programming and Links to Artificial Intelligence,”Computers & Operations Research 5, 533–549.

    Google Scholar 

  • Glover, F. (1989). “Tabu Search—Part I,”ORSA Journal on Computing 1, 190–206.

    Google Scholar 

  • Glover, F. (1990). “Tabu Search—Part II,”ORSA Journal on Computing 2, 4–32.

    Google Scholar 

  • Glover, F. (1995). “Tabu Search Fundamentals and Uses,” Working Paper, Graduate School of Business, University of Colorado, Boulder.

    Google Scholar 

  • Glover, F. (1996). “Tabu Search and Adaptive Memory Programming: Advances, Applications and Challenges,” Working Paper, Graduate School of Business, University of Colorado, Boulder.

    Google Scholar 

  • Goldberg, D. E. (1989).Genetic Algorithms in Search, Optimization and Machine Learning. Reading, MA: Addison Wesley.

    Google Scholar 

  • Holland, J. H. (1975).Adaptation in Natural and Artificial Systems. Ann Arbor: The University of Michigan Press.

    Google Scholar 

  • Johnson, D. S., and L. A.McGeoch. (1996). “The Traveling Salesman Problem: A Case Study in Local Optimization.” Forthcoming in J. K.Lenstra and E. H. L.Aarts (eds.),Local Search in Combinatorial Optimization. New York: Wiley.

    Google Scholar 

  • Jongens, K., and T.Volgenant. (1985). “The Symmetric Clustered Traveling Salesman Problem,”European Journal of Operational Research 19, 68–75.

    Google Scholar 

  • Laporte, G. (1992). “The Traveling Salesman Problem: An Overview of Exact and Approximate Algorithms,”European Journal of Operational Research 59, 231–247.

    Google Scholar 

  • Lawler, E. L., J. K.Lenstra, A. H. G.Rinnooy Kan and D. B.Shmoys. (1985).The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. Chichester: Wiley.

    Google Scholar 

  • Lin, S. (1965). “Computer Solutions of the Traveling Salesman Problem,”Bell System Technical Journal 44, 2245–2269.

    Google Scholar 

  • Lokin, F. C. J. (1978). “Procedures for Traveling Salesman Problems with Additional Constraints,”European Journal of Operational Research 3, 135–141.

    Google Scholar 

  • Potvin, J. Y., and F. Guertin. (1995). “A Genetic Algorithm for the Clustered Traveling Salesman Problem with an A Priori Order on the Clusters”, Technical Report CRT-95-06, Centre de recherche sur les transports, Université de Montréal.

  • Potvin, J. Y., and F.Guertin. (1996). “The Clustered Traveling Salesman Problem: A Genetic Approach.” In I. H.Osman and J. P.Kelly (eds.),Meta-heuristics: Theory and Applications, pp. 619–632. Boston: Kluwer.

    Google Scholar 

  • Renaud, J., F. F.Boctor, and G.Laporte. (1996). “A Fast Composite Heuristic for the Symmetric Traveling Salesman Problem,”INFORMS Journal on Computing 8, 134–143.

    Google Scholar 

  • Suh, J. Y., and D. V. Gucht. (1987). “Incorporating Heuristic Information into Genetic Search”. InProceedings of the Second Int. Conf. on Genetic Algorithms, pp. 100–107. Cambridge, MA.

  • Syswerda, G. (1989). “Uniform Crossover in Genetic Algorithms”. InProceedings of the Third Int. Conf. on Genetic Algorithms, 2–9. Fairfax, VA.

  • Ulder, N. L. J., E. H. L.Aarts, H. J.Bandelt, P. J. M.VanLaarhoven, and E.Pesch. (1991). “Genetic Local Search Algorithms for the Traveling Salesman Problem.” In H. P.Schwefel and R.Manner (eds.),Parallel Problem-Solving from Nature,Lecture Notes in Computer Science 496, pp. 109–116. Berlin: Springer-Verlag.

    Google Scholar 

  • Whitley, D., T. Starkweather, and D. Fuquay. (1989). “Scheduling Problems and Traveling Salesmen: The Genetic Edge Recombination Operator”. InProceedings of the Third Int. Conf. on Genetic Algorithms, pp. 133–140. Fairfax, VA.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laporte, G., Potvin, JY. & Quilleret, F. A tabu search heuristic using genetic diversification for the clustered traveling salesman problem. J Heuristics 2, 187–200 (1997). https://doi.org/10.1007/BF00127356

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00127356

Keywords