Skip to main content
Log in

Surface shape from the deformation of apparent contours

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

The spatiotemporal analysis of deforming silhouettes (apparent contours) is here extended using the mathematics of perspective projections and tools from differential geometry. Analysis of the image motion of a silhouette or apparent contour enables computation of local surface curvature along the corresponding contour generator on the surface, assuming viewer motion is known. To perform the analysis, a spatiotemporal parameterization of image-curve motion is needed, but is underconstrained (a manifestation of the well-known aperture problem). It is shown that an epipolar parameterization is most naturally matched to the recovery of surface curvature.

One immediate facility afforded by the analysis is that surface patches can be reconstructed in the vicinity of contour generators. Once surface curvature is known, it is possible to discriminate extremal contours from other fixed curves in space. Furthermore, the known robustness of parallax as a cue to depth extends to the case of surface curvature. Its derivative—rate of parallax—is shown theoretically to be a curvature cue that is robust to uncertainties in the known viewer motion. This robustness has been confirmed in experiments.

Finally, the power of the new analysis for robotics applications is demonstrated. Illustrations are given of an Adept robot, equipped with a CCD camera, circumnavigating curved obstacles. When further equipped with a suction gripper the robot manipulator can pick up an object by its curved surface, under visual guidance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. E. Arbogast, Modélisation automatique d'objets non polyédriques par observation monoculaire, Ph.D. thesis, Institut National Polytechnique de Grenoble, 1991.

  2. S.T.Barnard and M.A.Fischler, Computational stereo, ACM Computing Surveys 14(4):553–572, 1982.

    Google Scholar 

  3. H.G.Barrow and J.M.Tenenbaum, Recovering intrinisic scene characteristics from images. In A.Hanson and E.Riseman, eds., Computer Vision Systems. Academic Press: New York, 1978.

    Google Scholar 

  4. H.G.Barrow and J.M.Tenenbaum, Interpreting line drawings as three-dimensional surfaces, Artificial Intelligence 17:75–116, 1981.

    Google Scholar 

  5. R.H.Bartels, J.C.Beatty, and B.A.Barsky, An Introduction to Splines for Use in Computer Graphics and Geometric Modeling. Morgan Kaufmann: Los Altos, CA, 1987.

    Google Scholar 

  6. L.M.H.Beusmans, D.D.Hoffman, and B.M.Bennett, Description of solid shape and its inference from occluding contours, J. Opt. Soc. Amer. A 4:1155–1167, 1987.

    Google Scholar 

  7. A.Blake, J.M.Brady, R.Cipolla, Z.Xie, and A.Zisserman, Visual navigation around curved obstacles, Proc. IEEE Intern. Conf. Robotics Automat. 3:2490–2495, 1991.

    Google Scholar 

  8. A.Blake and H.Bulthoff, Shape from specularities: Computation and psychophysics, Phil. Trans. Roy. Soc. London 331:237–252, 1991.

    Google Scholar 

  9. A.Blake and R.Cipolla, Robust estimation of surface curvature from deformation of apparent contours. O.Faugeras, ed., Proc. 1st Europ. Conf. Comput. Vis., Antibes, Fr., pp. 465–474, Springer-Verlag: New York, 1990.

    Google Scholar 

  10. R.C.Bolles, H.H.Baker, and D.H.Marimont, Epipolar-plane image analysis: An approach to determining structure, Intern. J. Comput. Vis. 1:7–55, 1987.

    Google Scholar 

  11. M.Brady, J.Ponce, A.Yuille, and H.Asada, Describing surfaces, Comput. Vis. Graph. Image Process. 32:1–28, 1985.

    Google Scholar 

  12. J. Callahan and R. Weiss, A model for describing surface shape, Proc. Conf. Comput. Vis. Patt. Recog., San Francisco, pp. 240–245, 1985.

  13. J.F.Canny, A computational approach to edge detection, IEEE Trans. Patt. Anal. Mach. INtell. 8:679–698, 1986.

    Google Scholar 

  14. R. Cipolla, Active visual inference of surface shape, Ph.D. thesis, University of Oxford, 1991.

  15. R. Cipolla and A. Blake, The dynamic analysis of apparent contours, Proc. 3rd Intern. Conf. Comput. Vis., pp. 616–623, 1990.

  16. R.Cipolla and M.Yamamoto, Stereoscopic tracking of bodies in motion, Image Vis. Comput. 8(1):85–90, 1990.

    Google Scholar 

  17. R.M. Curwen, A. Blake, and R. Cipolla, Parallel implementation of lagrangian dynamics for real-time snakes, Proc. 2nd British Mach. Vis. Conf., 1991.

  18. M.P.DoCarmo, Differential Geometry of Curves and Surfaces, Prentice-Hall: Englewood Cliffs, NJ, 1976.

    Google Scholar 

  19. O.D Faugeras and G. Toscani, The calibration problem for stereo, Proc. Conf. Comput. Vis. Patt. Recogn., Miami Beach, pp. 15–20, 1986.

  20. I.D. Faux and M.J. Pratt, Computational Geometry for Design and Manufacture, Ellis-Horwood, 1979.

  21. S. Ganapathy, Decomposition of transformation matrices for robot vision, Proc. IEEE Conf. Robotics, pp. 130–139, 1984.

  22. P.J.Giblin and M.G.Soares, On the geometry of a surface and its singular profiles, Image Vis. Comput. 6(4):225–234, 1988.

    Google Scholar 

  23. P.J. Giblin and R. Weiss, Reconstruction of surfaces from profiles, Proc. 1st Intern. Conf. Comput. Vis., London, pp. 136–144, 1987.

  24. C.G. Harris, Determination of ego-motion from matched points, 3rd Alvey Vis. Conf., pp. 189–192, 1987.

  25. H.vonHelmholtz, Treatise on Physiological Optics, Dover: New York, 1925.

    Google Scholar 

  26. B.K.P.Horn, Robot Vision. McGraw-Hill, NY, 1986.

    Google Scholar 

  27. B.K.P.Horn, Closed-form solution of absolute orientation using unit quaternions. J. Opt. Soc. Amer. A4(4):629–642, 1987.

    Google Scholar 

  28. M. Kass, A. Witkin, and D. Terzopoulos, Snakes: active contour models, Proc. 1st Intern. Conf. Comput. Vis., London, pp. 259–268, 1987.

  29. J.J.Koenderink, What does the occluding contour tell us about solid shape? Perception 13:321–330, 1984.

    Google Scholar 

  30. J.J.Koenderink, Optic flow, Vision Research 26(1):161–179, 1986.

    Google Scholar 

  31. J.J.Koenderink, Solid Shape, MIT Press: Cambridge, MA, 1990.

    Google Scholar 

  32. J.J.Koenderink and A.J.VanDoorn, Invariant properties of the motion parallax field due to the movement of rigid bodies relative to an observer, Optica Acta 22(9):773–791, 1975.

    Google Scholar 

  33. J.J.Koenderink and A.J.VanDoorn, The singularities of the visual mapping, Biological Cybernetics 24:51–59, 1976.

    Google Scholar 

  34. J.J.Koenderink and A.J.VanDoorn, The shape of smooth objects and the way contours end, Perception 11:129–137, 1982.

    Google Scholar 

  35. M.M.Lipschutz, Differential Geometry, McGraw-Hill: New York, 1969.

    Google Scholar 

  36. H.C.Longuet-Higgins and K.Pradzny, The interpretation of a moving retinal image, Proc. Roy. Soc. London B208:385–397, 1980.

    Google Scholar 

  37. J.Malik, Interpreting line drawings of curved objects, Intern. J. Comput. Vis. 1:73–103, 1987.

    Google Scholar 

  38. D.Marr, Analysis of occluding contour, Proc. Roy. Soc. London 197:441–475, 1977

    Google Scholar 

  39. S.J.Maybank, The angular velocity associated with the optical flow field arising from motion through a rigid environment, Proc. Roy. Soc. London A401:317–326, 1985.

    Google Scholar 

  40. G. Medioni and Y. Yasumoto, Corner detection and curve representation using curve b-splines, Proc. Conf. Comput. Vis. Patt. Recog., Miami Beach, pp. 764–769, 1986.

  41. S. Menet, P. Saint-Marc, and G. Medioni, B-snakes: implementation and application to stereo, Proc. DARPA, pp. 720–726, 1990.

  42. R.S.Millman and G.D.Parker, Elements of Differential Geometry, Prentice-Hall: Englewood Cliffs, NJ, 1977.

    Google Scholar 

  43. B.O'Neill, Elementary Differential Geometry, Academic Press: San Diego, CA, 1966.

    Google Scholar 

  44. C.R.Rao, Linear Statistical Inference and Its Applications, Wiley: New York, 1973.

    Google Scholar 

  45. J.H.Rieger and D.L.Lawton, Processing differential image motion, J. Opt. Soc. Amer. A2(2):354–360, 1985.

    Google Scholar 

  46. G. Scott, The alternative snake—and other animals, Proc. 3rd Alvey Vis. Conf., pp. 341–347, 1987.

  47. R.Y.Tsai, A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf tv cameras and lenses. IEEE J. Robot. Automat. RA-3(4):323–344, 1987.

    Google Scholar 

  48. R.Y.Tsai and T.S.Huang, Uniqueness and estimation of three-dimensional motion parameters of a rigid object with curved surfaces, IEEE Trans. Patt. Anal. Mach. Intell. 6(1):13–26, 1984.

    Google Scholar 

  49. R.Y. Tsai and R.K. Lenz, A new technique for fully autonomous and efficient 3D robotics hand-eye calibration, 4th Intern. Symp. Robotics Res., Santa Cruz, CA, pp. 287–297, 1987.

  50. R.Y.Tsai and R.K.Lenz, Techniques for calibration of the scale factor and image center for high accuracy 3D machine vision metrology, IEEE Trans. Patt. Anal. Mach. Intell. 10(5):713–720, 1988.

    Google Scholar 

  51. R. Vaillant and O.D. Faugeras, Using occluding contours for recovering shape properties of objects. (Submitted to Trans. PAMI), 1992.

  52. D.Weinshall, Qualitative depth from stereo, with applications, Comput. Vis. Graph. Image Process. 49:222–241, 1990.

    Google Scholar 

  53. M.Yamamoto, Motion analysis using the visualized locus method, Trans. Inform. Process. Soc. Japan 22(5):442–449, 1981 (in Japanese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cipolla, R., Blake, A. Surface shape from the deformation of apparent contours. Int J Comput Vision 9, 83–112 (1992). https://doi.org/10.1007/BF00129682

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00129682

Keywords

Navigation