Skip to main content
Log in

Linear image features in stereopsis

  • Regular Paper
  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Most proposed algorithms for solving the stereo correspondence problem have used matching based in some way on linear image features. Here the geometric effect of a change in viewing position on the output of a linear filter is modeled. A simple local computation is shown to provide confidence intervals for the difference between filter outputs at corresponding points. Examples of the use of the confidence interval are provided. For some widely used filters, the confidence intervals are tightest at isolated vertical step edges, lending support to the idea of using edge-like features in stereopsis. However, the same conclusion does not apply to image regions with more complicated variation on the scale of the filter support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.D., Arnold and T.O., Binford, “Geometric constraints in stereo vision”, Proc. Spie, San Diego, vol. 238, pp. 281–292, 1980.

    Google Scholar 

  2. H.H. Baker and T.O. Binford, “Depth from edge and intensity based stereo”, PROC. SEVENTH INT. JOINT CONF. ARTIF. INTEL., August, Vancouver, pp. 631–636, 1981.

  3. S.T., Barnard and W.B., Thompson, “Disparity analysis of images”, IEEE Trans. Pami-2(4), pp. 333–340, 1980.

    Google Scholar 

  4. P., Burt and B., Julesz, “A disparity gradient limit for binocular fusion”, Science, vol. 208, pp. 615–617, 1980a.

    Google Scholar 

  5. P., Burt and B., Julesz, “Modifications of the classical notion of Panum's fusional area”, Perception, vol. 9, pp. 671–682, 1980b.

    Google Scholar 

  6. P., Burt and B., Julesz, “The disparity gradient limit for binocular fusion: an answer to J.D. Krol and W.A. van de Grind”, Perception, vol. 11, pp. 621–624, 1982.

    Google Scholar 

  7. D.B. Gennery, “A system for stereo computer vision with geometric models”, PROC. INTER. JOINT CONF. ARTIF. INTEL., Cambridge, MA, pp. 576–582, 1977.

  8. W.E.L., Grimson, “A computer implementation of a theory of human stereo vision”, Phil. Trans. Roy. Soc. London, vol. B292, pp. 217–253, 1981.

    Google Scholar 

  9. W.E.L., Grimson, From Images to Surfaces: A Computational Study of the Human Early Visual System. MIT Press: Cambridge, MA, 1981.

    Google Scholar 

  10. W.E.L., Grimson, “Computational experiments with a feature based stereo algorithm”, IEEE Trans. Pami-7(1), pp. 17–34, 1985.

    Google Scholar 

  11. M.J. Hannah, “Computer matching of areas in stereo images”, Stanford Artificial Intelligence Laboratory memo, AIM-239, July 1974.

  12. M., Kass, “Computing visual correspondence”, Proc. Arpa Image Understanding Workshop, Washington D.C., pp. 54–60, 1983. Reprinted in A., Pentland (ed.), From Pixels to Predicates. Ablex: Norwood, NJ, 1986.

    Google Scholar 

  13. M. Kass, “A computational framework for the visual correspondence problem”, PROC. EIGHTH INT. JOINT CONF. ARTIF. INTEL., Karlsruhe, W. Germany, August, pp. 1043–1045, 1983.

  14. M. Kass, “Computing visual correspondence”, S.M. thesis, Department of Computer Science and Electrical Engineering, Massachusetts Institute of Technology, 1984.

  15. J., Koenderink and A.van, Doorn, “Geometry of binocular vision and a model for stereopsis”, Biological Cybernetics, vol. 21, pp. 29–35, 1976.

    Google Scholar 

  16. J.D., Krol and W.A.van de, Grind, “Rehabilitation of a classical notion of Panum's fusional area”, Perception, vol. 11, pp. 621–624, 1982.

    Google Scholar 

  17. D., Marr and E., Hildreth, “Theory of edge detection”, Proc. Roy. Soc. (London), vol. B207, pp. 187–217, 1980.

    Google Scholar 

  18. D., Marr and T., Poggio, “A theory of human stereo vision”, Proc. Roy. Soc. London, vol. B204, pp. 301–328, 1979. (An earlier version appeared as MIT AI Lab Memo 451, 1977.)

    Google Scholar 

  19. J., Marsden, Elementary Classical Analysis. Freeman: San Francisco, 1974.

    Google Scholar 

  20. J.E.W., Mayhew and J.P., Frisby, “Psychophysical and computational studies towards a theory of human stereopsis”, Artificial Intelligence, vol. 17, pp. 349–385, 1981.

    Google Scholar 

  21. G.G. Medioni and R. Nevatia, “Segment-based stereo matching”, PROC. DARPA IMAGE UNDERSTANDING WORKSHOP, Washington, D.C., June, pp. 128–136, 1983.

  22. H.P. Moravec, “Towards automatic visual obstacle avoidance”, PROC. FIFTH INT. JOINT CONF. ARTIF. INTEL., Cambridge, MA, p. 584, 1977.

  23. K., Mori, M., Kododi, and H., Asada, “An iterative prediction and correction method for authomatic stereo comparison”, Computer Graphics and Image Processing, vol. 2, pp. 393–401, 1973.

    Google Scholar 

  24. H.K. Nishihara, “PRISM: A practical realtime iamging stereo matcher”, PROC. THIRD INT. CONF. ROBOT VISION AND SENSORY CONTROLS, SPIE Cambridge Symposium on Optical and Electro-Optical Engineering, November, p. 449, 1983.

  25. Y., Ohta and T., Kanade, “Stereo by intra- and interscanline search using dynamic programming”, IEEE Trans. Pami-7(2), pp. 139–154, 1985.

    Google Scholar 

  26. S.B., Pollard, J.E.W., Mayhew, and J.P., Frisby, “PMF: A stereo correspondence algorithm using a disparity gradient limit”, Perception, vol. 14, pp. 449–470, 1985.

    Google Scholar 

  27. L.H. Quam, “Hierarchical warp stereo”, PROC. IMAGE UNDERSTANDING WORKSHOP. Science Applications International, 1984.

  28. D., Terzopoulos, “Multilevel computational processes for visual surface reconstruction”, Computer Vision, Graphics and Image Processing, vol. 22, pp. 39–69, 1983.

    Google Scholar 

  29. V. Torre and T. Poggio, “On Edge Detection”, IEEE TRANS. PAMI-8(2), 1986.

  30. C.W., Tyler, “Stereoscopic vision: cortical limitations and a disparity scaling effect”, Science, vol. 181, pp. 276–278, 1973.

    Google Scholar 

  31. C.W. Tyler, “Spatial limitations of human stereoscopic vision”, PROC. SPIE, vol. 120, 1977.

  32. A. Witkin, D. Terzopoulos, and M. Kass, “Signal matching through scale space”, INT. J. COMPUTER VISION, vol. 2, 1987.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kass, M. Linear image features in stereopsis. Int J Comput Vision 1, 357–368 (1988). https://doi.org/10.1007/BF00133572

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00133572

Keywords

Navigation