Skip to main content
Log in

Mechanism of action of aspartic proteinases: Application of transition-state analogue theory

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

Applying the semiempirical MO methods AM1 and PM3 as well as the density functional theory to the model of the catalytic site composed of ca. 160–190 atoms, we have carried out studies aimed at the explanation of three aspects of the mechanism of action of aspartic proteinases: the site of dissociation within the catalytic diad COOH/COO- (i) in the free enzyme and (ii) in the Michaelis complex, and (iii) the energy changes associated with the catalytic paths. We have found that the state of dissociation within the catalytic diad is ligand-sensitive. In the free enzyme and in the intermediate complexes, Asp33 prefers to be dissociated with the outer oxygen of Asp213 protonated, while in the Michaelis and product complexes the opposite holds true. This is in agreement with recent mechanistic hypotheses and with some experimental results by FTIR and NMR. The energy diagram for the catalysis indicates that electronic effects are responsible most of all for the relative reduction of energy of the intermediates and possibly transition states on the catalytic reaction path. The shape of the diagram qualitatively agrees with the transition-state analogue theory for the enzymatic reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ratner, L., Haseltine, W., Pataraca, R., Livak, K.J., Starcich, B., Josephs, S.F., Doran, E.R., Rafalski, J.A., Whitchorn, E.A., Baumaister, K., Ivanoff, L., Patteway, S.R., Pearson, M.L., Lautenberger, L.A., Papas, T.S., Ghrayeb, J., Chang, N.T., Gallo, R.C. and Wong-Staal, F., Nature, 313 (1985) 277.

    Google Scholar 

  2. Kestler, H., Kodama, T., Ringler, D., Marthans, M., Pedersen, N., Lackner, A., Regier, D., Sehgal, P., Daniel, M., King, N. and Desrosiers, R., Science, 248 (1990) 1109.

    Google Scholar 

  3. Fitzgerald, P.M.D. and Springer, J.P., Annu. Rev. Biophys. Biophys. Chem., 20 (1991) 299.

    Google Scholar 

  4. Oldziel, S., Ph.D. Thesis, University of Gdańsk, Gdańsk, Roland, 1995.

  5. Sielecki, A.R., Hayakawa, K., Fujinaga, M., Murphy, M.E.R., Faser, M., Muri, A.K., Carilli, C.T., Lewicki, J.A., Baxter, J.D. and James, M.N.G., Science, 243 (1989) 1346.

    Google Scholar 

  6. James, M.N.G. and Sielecki, A.R., In Jurnak, J. and McPherson, A. (Eds.) Biological Macromolecule and Assemblies, Wiley, New York, NY, U.S.A., 1987, pp. 413–482.

    Google Scholar 

  7. Pearl, L.H., FEBS Lett., 214 (1987) 8.

    Google Scholar 

  8. Fruton, J.S., In Neuberger, A. and Brocklehurst, K. (Eds.) Hydrolytic Enzymes, Elsevier, Amsterdam, The Netherlands, 1987, pp. 1–38.

    Google Scholar 

  9. Kostka, V. (Ed.) Aspartic Proteinases and their Inhibitors, Walter de Gruyter, Berlin, Germany, 1985, pp. 1–110.

    Google Scholar 

  10. James, M.N.G. and Sielecki, A.R., Biochemistry, 24 (1985) 3701.

    Google Scholar 

  11. James, M.N.G., Sielecki, A.R., Hayakawa, K. and Gelb, M.H., Biochemistry, 31 (1992) 3872.

    Google Scholar 

  12. Veerapandian, B., Cooper, J.B., Sali, A., Blundell, T.L., Rosati, R.L., Dominy, B.W., Damon, D.B. and Hoover, D.J., Protein Sci., 1 (1992) 322.

    Google Scholar 

  13. Parris, K.D., Hoover, D.J., Damon, D.B. and Davies, D.R., Biochemistry, 21 (1992) 8125.

    Google Scholar 

  14. Hyland, L.J., Tomaszek, T.A., Roberts, G.D., Carr, S.A., Magaard, V.W., Bryan, H.L., Fakhoury, S.A., Moore, M.L., Minnich, M.D., Culp, J.S., DesJarlais, R.L. and Meek, T.D., Biochemistry, 30 (1991) 8441.

    Google Scholar 

  15. Hyland, L.J., Tomaszek, T.A. and Meek, T.D., Biochemistry, 30 (1991) 8454.

    Google Scholar 

  16. MOPAC 6.01, Unichem 2.1, Cray Research, Engano, MN, U.S.A., 1993.

  17. Dewar, M.J.S., Zoebisch, E.G., Healy, E.F. and Stewart, J.J.P., J. Am. Chem. Soc., 107 (1985) 3902.

    Google Scholar 

  18. Stewart, J.J.P., J. Comput. Chem., 10 (1989) 209.

    Google Scholar 

  19. DMOL, v. 2.30, Biosym Technologies, San Diego, CA, U.S.A., 1994.

  20. vonBarth, U. and Heidin, L., J. Phys. Chem. 5 (1972) 1627.

    Google Scholar 

  21. PCMODEL, v. 4.0, Serena Software, Bloomington, IN, U.S.A., 1991.

  22. Gajewski, J.J., Gilbert, K.E. and McKevey, J., In Advances in Molecular Modeling, A Research Annual, Vol. 2, Jai Press, Greenwich, U.K., 1990.

    Google Scholar 

  23. James, M.N.G. and Sielecki, A.R., J. Mol. Biol., 163 (1983) 299, PDB file 3APP.

    Google Scholar 

  24. Iliadis, G., Zundel, G. and Brzeziński, B., FEBS Lett., 325 (1994) 315.

    Google Scholar 

  25. Goldblum, A., Glick, M. and Rayan, A., Theor. Chim. Acta, 85 (1993) 231.

    Google Scholar 

  26. Clarkowski, J., Oldziej, S. and Liwo, A., Pol. J. Chem., 68 (1994) 939.

    Google Scholar 

  27. Lienhard, G.E., Science, 180 (1973) 149.

    Google Scholar 

  28. Rich, D.H., J. Med. Chem., 28 (1995) 263.

    Google Scholar 

  29. Pauling, L., Chem. Eng. News, 24 (1946) 1375.

    Google Scholar 

  30. Goldblum, A., 2nd Israell-Polish Symposium on Chemistry and Biology of Peptides, Abstract Book, 1995, p. 23.

  31. Suguna, K., Bott, R.R., Padlan, E.A., Subramanian, E., Scheriff, S., Cohen, G.E. and Davies, D.R., J. Mol. Biol., 196 (1987) 877.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oldziej, S., Ciarkowski, J. Mechanism of action of aspartic proteinases: Application of transition-state analogue theory. J Computer-Aided Mol Des 10, 583–588 (1996). https://doi.org/10.1007/BF00134181

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00134181

Keywords

Navigation