Skip to main content
Log in

Invariant surface and motion estimation from sparse range data

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In this paper, we present a system for the estimation of the surface structure and the motion parameters of a free-flying object in a tele-robotics experiment. The system consists of two main components: (i) a vision-based invariant-surface and motion estimator and (ii) a Kalman filter state estimator. We present a new algorithm for motion estimation from sparse multi-sensor range data. The motion estimates from the vision-based estimator are input to a Kalman filter state estimator for continuously tracking a free-flying object in space under zero-gravity conditions. The predicted position and orientation parameters are then fed back to the vision module of the system and serve as an initial guess in the search for optimal motion parameters. The task of the vision module is two-fold: (i) estimating a piecewise-smooth surface from a single frame of multi-sensor data and (ii) determining the most likely (in the Bayesian sense) object motion that makes data in subsequent time frames to have been sampled from the same piecewise-smooth surface. With each incoming data frame, the piecewise-smooth surface is incrementally refined. The problem is formulated as an energy minimization and solved numerically resulting in a surface estimate invariant to 3D rigid motion and the vector of motion parameters. Performance of the system is depicted on simulated and real range data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ullman, ‘The Interpretation of Structure from Motion,’ Proc. R. Soc. London, vol. B203, 1979, pp. 405–426.

    Google Scholar 

  2. J.W. Roach and J.K. Aggarwal, “Determining the Movement of Objects from a Sequence of Images,’ IEEE Trans. Patt. Anal. Mach. Intell., vol. PAMI-2, 1980, pp. 554–562.

    Google Scholar 

  3. J.A. Webb and J.K. Aggarwal, ‘Structure and Motion of Rigid and Jointed Objects,’ Artif. Intell., no. 19, 1981, pp. 107–130.

  4. R.T. Tsai and T.S. Huang, ‘Uniqueness and Estimation of Three-Dimensional Motion Parameters of Rigid Objects with Curved Surface, IEEE Trans. Patt. Anal. Mach. Intell., vol. PAMI-6, 1984, pp. 13–26.

    Google Scholar 

  5. A. Mitiche, S. Seida, and J.K. Aggarwal, ‘Line-Based Computation of Structure and Motion Using Angular Invariance,’ in Proceedings of the IEEE Computer Society Workshop on Motion, May 1986, pp. 175–180.

  6. J. Weng, T.S. Huang, and N. Ahuja, ‘3-D Motion Estimation, Understanding and Prediction from Noisy Image Sequences,’ IEEE Trans. Patt. Anal. Mach. Intell., vol. PAMI-9, 1987, pp. 370–389.

    Google Scholar 

  7. J.K. Aggarwal and N. Nandhakumar, On the Computation of Motion from a Sequence of Images—A Review, Technical Report, University of Texas at Austin, TR-88-2-47, 1988.

  8. O.D. Fugeras and M. Herbert, ‘The Representation, Recognition and Positioning of 3D Shapes from Range Data,’ in Three-Dimensional Machine Vision, T. Kanade, ed., Boston: Kluwer Academic Publishers, 1987, pp. 301–353.

    Google Scholar 

  9. Z.C. Lin, T.S. Huang, S.D. Bolstein, H. Lee, and E.A. Margerum, ‘Motion Estimation from 3D Point sets with and without Correspondence,’ Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami Beach, June 22–26, 1986, pp. 194–201.

  10. R.S. Szeliski, ‘Estimating Motion from Sparse Range Data without Correspondence,’ in Proceedings of the IEEE Second International Conference on Computer Vision, Tarpon Springs, FL, Dec. 5–8, 1988, pp. 207–216.

  11. G. Hirzinger, J. Heindl, and K. Landzettel, ‘Predictive and Knowledge-Based Tele Robotics Control Concepts,’ IEEE International Conference on Robotics and Automation, Scottsdale, AZ, May 14–18, 1989.

  12. D. Terzopoulos, ‘The Computation of Visible-Surface Representations,’ IEEE Trans. Patt. Anal. Mach. Intell., vol. PAMI-10, 1988, pp. 417–438.

    Google Scholar 

  13. B.C. Vemuri, D. Terzopoulos, and P.J. Lewicki, ‘Canonical Parameters for Invariant Surface Representation,’ SPIE Conference on Advances in Intelligent Robotic Systems, Pnhiladelphia, November 1989.

  14. P.S. Maybeck, Stochastic Models, Estimation and Control, vol. 1, New York: Academic Press, 1979.

    Google Scholar 

  15. R.M. Bolle and B.C. Vemuri, ‘On 3D Surface Reconstruction Methods,’ IEEE Trans. Patt. Anal. Mach. Intell., vol. PAMI-13, 1991, pp. 1–13.

    Google Scholar 

  16. W.E.L. Grimson, ‘An Implementation of a Computational Theory of Visual Surface Interpolation,’ Comput. Vis., Graph., Image Process., vol. 22, 1983, pp. 39–69.

    Google Scholar 

  17. D. Terzopoulos, ‘Multilevel Computational Processes for Visible Surface Reconstruction, Comput. Vis., Graph., Image Process., vol. 24, 1983, pp. 52–96.

    Google Scholar 

  18. A. Blake and A. Zisserman, Visual Reconstruction, Cambridge, MA: MIT Press, 1987.

    Google Scholar 

  19. B.C. Vemuri, ‘Representation and Recognition of Objects from Dense Range Maps,’ Ph.D. thesis, Dept. of Electrical and Computer Engineering, University of Texas, Austin, TX, 1987.

  20. A. Gelb, ed., Applied Optimal Estimation, Cambridge, MA: MIT Press, 1974.

    Google Scholar 

  21. B.C. Vemuri, A. Mitiche, and J.K. Aggarwal, ‘Curvature-Based Representation of Objects from Range Data,’ Intl. J. Image Vis. Comput., vol. 4, 1986, pp. 107–114.

    Google Scholar 

  22. S. Geman and D. Geman, ‘Stochastic Relaxation, Gibbs Distribution, and the Bayesian Restoration of Images,’ IEEE Trans. Patt. Anal. Mach. Intell., vol. PAMI-6, 1984, pp. 721–741.

    Google Scholar 

  23. D. Terzopoulos, ‘Regularization of Inverse Visual Problems Involving Discontinuities,’ IEEE Trans. Patt. Anal. Mach. Intell., vol. PAMI-8, 1986, pp. 413–424.

    Google Scholar 

  24. W. Press et al., Numerical Recipes: The Art Of Scientific Computing, Cambridge: Cambridge University Press, 1986.

    Google Scholar 

  25. R.S. Szeliski, ‘Fast Surface Interpolation Using Hierarchical Basis Functions,’ in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Diego, June 4–8, 1989, pp. 222–228.

  26. G. Taubin, Algebraic Nonplanar Curve and Surface Estimation in 3-space with Applications to Position Estimation, IBM Technical Report RC-13873, 1988.

  27. T.W. Seederberg, D.C. Anderson, and R.N. Goldman, ‘Implicit Representation of Parametric Curves and Surfaces, Comput. Vis., Graph., Image Process., vol.28, 1984, pp.72–84.

    Google Scholar 

  28. L.E. Elsgolc, Calculus of Variations, Reading, MA: Addison-Wesley Publishing Company, 1962.

    Google Scholar 

  29. J.A. Thorpe, Elementary Topics in Differential Geometry, Berlin: Springer-Verlag, 1979.

    Google Scholar 

  30. G. Dahlquist and A. Björck, Numerical Methods, Englewood Cliffs, NJ: Prentice-Hall, 1974.

    Google Scholar 

  31. D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Reading, MA: Addison-Wesley Publishing Company, 1989.

    Google Scholar 

  32. A. Witkin, D. Terzopoulous, and M. Kass, ‘Signal Matching through Scale Space,’ Intl. J. Comput. Vis., vol. 1, 1987, pp.133–144.

    Google Scholar 

  33. D. Kraft, A Software Package for Sequential Quadratic Programming, Technical Report DFVLR-FB 88–28, DFVLR, Obersfaffeuhofen, Germany, 1988.

    Google Scholar 

  34. T.J. Broida and R. Chellappa, ‘Estimation of Object Motion Parameters from Noisy Images,’ IEEE Trans. Patt. Anal. Mach. Intell., vol. PAMI-8, 1986, pp. 90–99.

    Google Scholar 

  35. L. Matthies, R. Szeliski, and T. Kanade, ‘Incremental Estimation of Depth Maps from Image Sequences,’ IEEE Second International Conference on Computer Vision, Tarpon Springs, Fl, Dec. 5–8, 1988.

  36. J.G. Balchen, F. Dessen, and G. Skofteland, ‘Sensor Integration Using State Estimators,’ NATO Advanced Research Workshop on Traditional and Non-Traditional Robotic Sensors, Maratea, Italy, August 28–September 2, 1989.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vemuri, B.C., Skofteland, G. Invariant surface and motion estimation from sparse range data. J Math Imaging Vis 1, 43–64 (1992). https://doi.org/10.1007/BF00135224

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00135224

Keywords

Navigation