Skip to main content
Log in

A fast new approach to pharmacophore mapping and its application to dopaminergic and benzodiazepine agonists

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

In the absence of a 3D structure of the target biomolecule, to propose the 3D requirements for a small molecule to exhibit a particular bioactivity, one must supply both a bioactive conformation and a superposition rule for every active compound. Our strategy identifies both simultaneously. We first generate and optimize all low-energy conformations by any suitable method. For each conformation we then use ALAD-DIN to calculate the location of points to be considered as part of the superposition. These points include atoms in the molecule and projections from the molecule to hydrogen-bond donors and acceptors or charged groups in the binding site. These positions and the relative energy of each conformation are the input to our new program DISCO. It uses a clique-detection method to find superpositions that contain a least one conformation of each molecule and user-specified numbers of point types and chirality. DISCO is fast; for example, it takes about 1 min CPU to propose pharmacophores from 21 conformations of seven molecules. We typically run DISCO several times to compare alternative pharmacophore maps. For D2 dopamine agonists DISCO shows that the newer 2-aminothiazoles fit the traditional pharmacophore. Using site points correctly identifies the bioactive enantiomers of indoles to compare with catechols whereas using only ligand points leads to selecting the inactive enantiomer for the pharmacophore map. In addition, DISCO reproduces pharmacophore maps of benzodiazepines in the literature and proposes subtle improvements. Our experience suggests that clique-detection methods will find many applications in computational chemistry and computer-assisted molecular design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marshall, G.R., Barry, C.D., Bosshard, H.E., Dammkoehler, R.A. and Dunn, D.A., In Olson, E.C. and Christoffersen, R.E. (Eds.) Computer-Assisted Drug Design, American Chemical Society Symposium, No. 112, ACS, Washington 1979, pp. 205–226.

    Google Scholar 

  2. Martin, Y.C., J Methods Enzymol., 203 (1991) 587.

    Google Scholar 

  3. Martin, Y.C., J. Med. Chem., 35 (1992) 2145.

    Google Scholar 

  4. Martin, Y.C., Bures, M.G. and Willett, P., In Lipkowitz, K.B. and Boyd, D.B. (Eds.) Reviews in Computational Chemistry, VCH Publishers, New York, 1990, pp. 213–263.

    Google Scholar 

  5. Murray-Rust, P. and Glusker, J.P., J. Am. Chem. Soc., 106 (1984) 1018.

    Google Scholar 

  6. Kelly, J.A. and Knox, J.R., In Jensen, B., Jorgensen, F.S. and Kofod, H. (Eds.) Frontiers in Drug Research — Crystallographic and Computational Methods, Alfred Benzon Foundation, Copenhagen, 1990, p. 252.

    Google Scholar 

  7. Ippolito, J.A., Alexander, R.S. and Christianson, D.W., J. Mol. Biol., 215 (1990) 457.

    Google Scholar 

  8. Taylor, R. and Kennard, O., Acc. Chem. Res. 17 (1984) 320.

    Google Scholar 

  9. Crippen, G.M. and Havel, T.F., In Bawden, D. (Ed.) Chemometrics Research Studies Series, Research Studies Press, Wiley, New York, 1988. We use DGEOM by Blaney, J., Crippen, G.M., Dearing, A. and Dixon, J.S. from QCPE, program number 590.

    Google Scholar 

  10. Brint, A.T. and Willett, P., J. Chem. Inf. Comput. Sci., 27 (1987) 152.

    Google Scholar 

  11. Crippen, G., J. Med. Chem., 22 (1979) 988; 23 (1980) 599; 24 (1981) 198.

    Google Scholar 

  12. Crandell, C.W. and Smith, D.H., J. Chem. Inf. Comput. Sci., 23 (1983) 186.

    Google Scholar 

  13. Danzinger, D.J. and Dean, P.M., J. Theor. Biol., 116 (1985) 215.

    Google Scholar 

  14. Namasivayam, S. and Dean, P.M., J. Mol. Graphics, 4 (1986) 46.

    Google Scholar 

  15. Kato, Y., Itai, A. and Iitaka, Y., Tetrahedron, 43 (1987) 5229.

    Google Scholar 

  16. Chau, P.-L. and Dean, P.M., J. Mol. Graphics, 5 (1987) 88, 97.

    Google Scholar 

  17. Dean, P.M. and Chau, P.-L., J. Mol. Graphics, 5 (1987) 152.

    Google Scholar 

  18. Dean, P.M., Callow, P. and Chau, P.-L., J. Mol. Graphics, 6 (1988) 28, 38.

    Google Scholar 

  19. Hermann, R.B. and Herron, D.K., J. Comput-Aided Mol. Design 5 (1991) 511.

    Google Scholar 

  20. Kuhl, F.S., Crippen, G.M. and Friesen, D.K., J. Comput. Chem., 5 (1984) 24.

    Google Scholar 

  21. Pearlman, R.S., Rusinko III, A., Skell, J.M., Balducci, R. and McGarity, C.M., CONCORD, Distributed by Tripos Associates, Inc., 1969 S. Hanley Road, Suite 303, St Louis, MO 63944, U.S.A.

  22. Allen, F.H., Davies, J.E., Galloy, J.J., Johnson, O., Kennard, O., Macrea, C.F., Mitchell, E.M., Mitchell, G.F., Smith, J.M. and Watson, D.G., J. Chem. Inf. Comput. Sci., 31 (1991) 187.

    Google Scholar 

  23. Martin, Y.C. and Rys, J., unpublished program.

  24. Van Drie, J.H., Weininger, D. and Martin, Y.C., J. Comput.-Aided Mol. Design, 3 (1989) 225.

    Google Scholar 

  25. Thanki, N., Thornton, J.M. and Goodfellow, J.M., J. Mol. Biol., 202 (1988) 637.

    Google Scholar 

  26. Boobbyer, D.N.A., Goodford, P.J., McWhinnie, P.M. and Wade, R.C., J. Med. Chem., 32 (1989) 1083.

    Google Scholar 

  27. Vedani, A. and Dunitz, J.D., J. Am. Chem. Soc., 107 (1985) 7653.

    Google Scholar 

  28. Jeffrey, G.A. and Saenger, W., Hydrogen Bonding in Biological Structures, Springer-Verlag, Berlin, 1991.

    Google Scholar 

  29. Daylight Chemical Information Systems, Inc., 1991, 3951 Claremont St. Irvine, CA 92714.

  30. Weininger, D. and Weininger, A., J. Chem. Inf. Comput. Sci., 28 (1988) 31.

    Google Scholar 

  31. Martin, Y.C., Kim, K.-H. and Bures, M.G., In Wermuth, C.G. (Ed.) Medicinal Chemistry in the 21st Century, Blackwell Scientific Publ., Oxford, 1992, pp. 295–317.

    Google Scholar 

  32. Martin, Y.C. and Danaher, E.B., In Williams, M., Glennon, R. and Timmermans, P. (Eds.) Receptor Pharmacology and Function, Marcel Dekker, New York, 1988, pp. 137–171.

    Google Scholar 

  33. Seeman, P., Watanabe, M., Grigoriadis, D., Tedesco, J.L., George, S.R., Svensson, U., Lars, J., Nilsson, G. and Neumeyer, J.L., Mol. Pharmacol., 28 (1985) 391.

    Google Scholar 

  34. Caprathe, B.W., Jaen, J.C., Wise, L.D., Heffner, T.G., Pugsley, T.A., Meltzer, L.T. and Parvez, M., J. Med. Chem., 34 (1991) 2736.

    Google Scholar 

  35. Borea, P.A., Gilli, G., Bertolasi, V. and Ferretti, V., Mol. Pharmacol., 31 (1987) 334

    Google Scholar 

  36. Codding, P.W. and Muir, A.K.S., Mol. Pharmacol., 28 (1985) 178.

    Google Scholar 

  37. Crippen, G.M., Mol. Pharmacol., 22 (1982) 11.

    Google Scholar 

  38. Loew, G.H., Villar, H.O., Jung, W. and Daview, M.F., In Rapaka, R.S., Makriyannis, A., Kuhar, M.J. (Eds.) National Institute on Drug Abuse Research Monograph Series, 112, U.S. Department of Health and Human Services, 1991, pp. 43–61.

  39. Tebib, S., Bourguignon, J.-J. and Wermuth, C.-G., J. Comput.-Aided Mol. Design, 1 (1987) 153.

    Google Scholar 

  40. Trifiletti, R.R. and Snyder, S.H., Mol. Pharmacol., 26 (1984) 458.

    Google Scholar 

  41. AMPAC, version 2.1 (QCPE No. 506), available from Quantum Chemical Program Exchange, Indiana University, Bloomington, IN, U.S.A.

  42. Sheridan, R.P., Nilakantan, R., Dixon, J.S. and Venkataraghavan, R., J. Med. Chem., 29 (1986) 899.

    Google Scholar 

  43. Weiner, P.K., Langridge, R., Blaney, J.M., Schaefer, R. and Kollman, P.A., Proc. Natl. Acad. Sci. USA, 79 (1982) 3754.

    Google Scholar 

  44. Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R. and Ferrin, T., J. Mol. Biol., 161 (1982) 269.

    Google Scholar 

  45. Smellie, A.S., Crippen, G.M. and Richards, W.G., J. Chem. Inf. Comput. Sci., 31 (1991) 386.

    Google Scholar 

  46. Moon, J.B. and Howe, W.J., Tetrahedron Comput. Methodol., 3 (1990) 697.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, Y.C., Bures, M.G., Danaher, E.A. et al. A fast new approach to pharmacophore mapping and its application to dopaminergic and benzodiazepine agonists. J Computer-Aided Mol Des 7, 83–102 (1993). https://doi.org/10.1007/BF00141577

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00141577

Key words

Navigation