Skip to main content
Log in

On the use of isovalued surfaces to determine molecule shape and reaction pathways

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

Novel insights into local molecule structure and reactivity can be gained from viewing isovalued surfaces of the molecular electron density, electrostatic potential and molecular orbitals rendered as colored, 3-D objects. For example, drawing positive and negative electrostatic isopotential surfaces partitions the molecule into regions subject to nucleophilic or electrophilic attack. Similarly, coloring isodensity surfaces to indicate the magnitude of the gradient of the electron density maps the molecule surface into regions of high and low electronegativity.

A basic understanding of reaction mechanisms can also come from viewing and manipulating isovalued surfaces. A theory of molecular interactions, based upon second-order perturbation theory, provides for the decomposition of the intermolecular interaction energy into steric, electrostatic and orbital interactions. Color figures illustrate the docking of reactant molecular densities, electrostatic potentials and orbitals on low-energy pathways. The figures are used to visualize the steric, electrostatic and orbital contributions to molecular interaction energy. The visualization not only identifies low-energy reaction pathways, but it frequently reveals local interactions which determine the magnitude of the total interaction energy. Similar insight is not easily obtained by simple evaluation of the total interaction energy. Approximate transition states, built from structures along low-energy approach pathways, are excellent starting points for transition state searches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lowdin, P.O., Phys. Rev., 97 (1955) 1974.

    Google Scholar 

  2. Bader, R.F.W., Henmeker, W.H. and Cade, P.E., J. Chem. Phys., 46 (1967) 3341.

    Google Scholar 

  3. Purvis, III, G.D. and Culberson, J.C., J. Mol. Graphics, 4 (1986) 88.

    Google Scholar 

  4. Koide, A., Doi, A. and Kajioka, K., J. Mol. Graphics, 4 (1986) 149.

    Google Scholar 

  5. Hout, R.F., Pietro, W.J. and Hehre, W.J., A Pictorial Approach to Molecular Structure and Reactivity, John Wiley & Sons. New York, 1984.

    Google Scholar 

  6. See, for examples, Politzer, P. and Truhlar, D.G. (Eds.), Chemical Applications of Atomic and Molecular Electrostatic Potentials, Plenum Press, New York, 1981.

    Google Scholar 

  7. Jorgensen, W.L. and Salem, L., The Organic Chemist's Book of Orbitals, Academic Press, New York, 1973.

    Google Scholar 

  8. Stewart, J.J.P., MOPAC 5.10, CACheTM Group, Tektronix, Inc., Beaverton, OR, 1989; Stewart, J.J.P., MOPAC 5.0, Quantum Chemistry Program Exchange, Program No. 455, Bloomington, IN, 1989.

    Google Scholar 

  9. Dewar, M.J.S. and Thiel, W., J. Am. Chem. Soc., 99 (1977) 4899

    Article  CAS  PubMed  Google Scholar 

  10. Dewar, M.J.S., J. Mol. Struct., 100 (1983) 41.

    Google Scholar 

  11. Huggins, M.L., J. Am. Chem. Soc., 75 (1953) 4126.

    Google Scholar 

  12. Weinstein, H., Politzer, P. and Srebrenik, S., Theoret. Chim. Acta (Berl.), 38 (1975) 159.

    Google Scholar 

  13. Purvis, III, G.D. and Culberson, J.C., Int. J. Quant. Chem., QBS 13 (1986) 261.

    Google Scholar 

  14. Purvis III, G.D., 1986, unpublished.

  15. Sosa, C., Trucks, G.W., Purvis, III, G.D. and Bartlett, R.J., J. Mol. Graphics, 7 (1989) 28.

    Google Scholar 

  16. Wiberg, K.B. and Walker, F.H., J. Am. Chem. Soc., 104 (1982) 5239.

    Google Scholar 

  17. Jackson, J.E. and Allen, L.C., J. Am. Chem. Soc., 106 (1984) 591.

    Google Scholar 

  18. Quarendon, P., Naylor, C.B. and Richards, W.G., J. Mol. Graphics, 2 (1984) 4.

    Google Scholar 

  19. Kahn, S.D., Pau, C.F., Chamberlin, A.R. and Hehre, W.J., J. Am. Chem. Soc., 109 (1987) 650.

    Google Scholar 

  20. Claverie, P., In Pullman, B. (Ed.), Intermolecular Interactions: From Diatomics to Biopolymers, John Wiley & Sons, New York, 1978.

    Google Scholar 

  21. Klopman, G., J. Am. Chem. Soc., 90 (1968) 223.

    Google Scholar 

  22. Salem, L., J. Am. Chem. Soc., 90 (1968) 543; loc. cit. 553.

    Google Scholar 

  23. Fleming, I., Frontier Orbitals and Organic Chemical Reactions, John Wiley & Sons, New York, 1976.

    Google Scholar 

  24. Mayer, A.I., Int. J. Quant. Chem., 23 (1983) 341.

    Google Scholar 

  25. Woodward, R.B. and Hoffman, R., The Conservation of Orbital Symmetry, Verlag Chemie, Weinheim/Bergstr., 1970.

    Google Scholar 

  26. Salem, L., Electrons in Chemical Reactions: First Principles, John Wiley & Sons, New York, 1982.

    Google Scholar 

  27. Albright, T.A., Burdett, J.K. and Whangbo, M.-H., Orbital Interactions in Chemistry, John Wiley & Sons, New York, 1985.

    Google Scholar 

  28. Teddar, J.M. and Nechvatal, A., Pictorial Orbital Theory, Pitman, London, 1985.

    Google Scholar 

  29. Fliszar, Charge Distributions and Chemical Effects, Springer-Verlag, New York, 1983.

    Google Scholar 

  30. Scrocco, E. and Tomasi, J., Adv. Quantum Chem., 11 (1978) 115.

    Google Scholar 

  31. Kollman, P.A., In Politzer, P. and Truhlar, D.G. (Eds.), Chemical Applications of Atomic and Molecular Electrostatic Potentials, Plenum Press, New York, 1981.

    Google Scholar 

  32. Streitwieser, Jr., A. and Owens, P.H., Orbital and Electron Density Diagrams, The Macmillan Company, New York, 1973.

    Google Scholar 

  33. Kahn, S.D. and Hehre, W.J., J. Am. Chem. Soc., 109 (1987) 663; ibid. 666.

    Google Scholar 

  34. Kahn, S.D., Pau, C.F. and Hehre, W.J., J. Am. Chem. Soc., 108 (1986) 7396.

    Google Scholar 

  35. Kahn, S.D., Pau, C.F., Overman, L.E. and Hehre, W.J., J. Am. Chem. Soc., 108 (1986) 7381.

    Google Scholar 

  36. Kahn, S.D. and Hehre, W.J., J. Am. Chem. Soc., 108 (1986) 7399.

    Google Scholar 

  37. Dolbier, Jr., W.R., Purvis III, G.D., Seabury, M.J., Wicks, G.E. and Burkholder, C.R., Tetrahedron, submitted.

  38. Hoffmann, R., J. Chem. Phys., 39 (1963) 1397.

    Google Scholar 

  39. Dewar, M.J.S., Healy, E.F. and Stewart, J.J.P., J. Chem. Soc. Faraday Trans. II, 3 (1984) 227.

    Google Scholar 

  40. Morrell, M.M., Parr, R.G. and Levi, M, J. Chem. Phys., 62 (1975) 549.

    Google Scholar 

  41. Handy, N.C., Marron, M.T. and Silverstone, H.J., J. Phys. Rev., 45 (1969) 45.

    Google Scholar 

  42. Allen, L.C., J. Am. Chem. Soc., 111 (1989) 9003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

CACheTM Technical Report No. 1, Tektronix Inc., Beaverton, OR.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Purvis, G.D. On the use of isovalued surfaces to determine molecule shape and reaction pathways. J Computer-Aided Mol Des 5, 55–80 (1991). https://doi.org/10.1007/BF00173470

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00173470

Key words

Navigation