Skip to main content
Log in

Adaptive computational models of fast learning of motion direction discrimination

  • Original Papers
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

In a previous study, we found that subjects' performance in a task of direction discrimination in stochastic motion stimuli shows fast improvement in the absence of feedback and the learned ability is retained over a period of time. We model this learning using two unsupervised approaches: a clustering model that learns to accommodate the motion noise, and an averaging model that learns to ignore the noise. Extensive simulations with the models show performance similar to psychophysical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelson E, Bergen JR (1986) The extraction of spatio-temporal energy in human and machine vision. IEEE Workshop on Motion, pp 151–155

  • Ball K, Sekuler R (1987) Direction-specific improvement in motion discrimination. Vision Res 27:953–965

    Article  CAS  Google Scholar 

  • Britten KH, Shadlen NM, Newsome WT (1992) The analysis of visual motion: a comparison of neuronal and psychophysical performance. J Neurosci 12:4745–4765

    Article  CAS  Google Scholar 

  • Downing CJ, Movshon JA (1989) Spatial and temporal summation in the detection of motion in stochastic random dot displays. Invest Ophthalmol Vis Sci [Suppl] 30:72

    Google Scholar 

  • Durbin R, Rumelhart DE (1989) Product units: a computationally powerful and biologically plausible extension to backpropagation networks. Neural Comput 1:133–142

    Article  Google Scholar 

  • Fendick M, Westheimer G (1983) Effects of practice and the separation of test targets on foveal and perifoveal hyperacuity. Vision Res 23:145–150

    Article  CAS  Google Scholar 

  • Fiorentini A, Berardi N (1980) Perceptual learning specific for orientation and spatial frequency. Nature 287:43–44

    Article  CAS  Google Scholar 

  • Fleet DJ, Jepson AD (1990) Computation of component image velocity from local phase information. Int J Comput Vis 5:77–104

    Article  Google Scholar 

  • Frégnac Y, Shulz D, Thorpe S, Bienstock E (1988) A cellular analogue of visual cortical plasticity. Nature 333:367–370

    Article  Google Scholar 

  • Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of movement direction. Science 233:1416–1419

    Article  CAS  Google Scholar 

  • Gilbert CD, Wiesel TN (1992) Receptive field dynamics in adult primary visual cortex. Nature 356:150–152

    Article  CAS  Google Scholar 

  • Grzywacz NM, Yuille AL (1990) A model for the estimate of local image velocity by cells in the visual cortex. Proc R Soc Lond A 239:129–161

    Article  CAS  Google Scholar 

  • Heeger DJ (1987) Optical flow using spatiotemporal filters. Int J Comput Vis 1:279–302

    Article  Google Scholar 

  • Heeger DJ, Jepson AD (1992) Subspace methods for recovering rigid motion. I. Algorithm and implementation. Int J Comput Vis 7:95–117

    Article  Google Scholar 

  • Hertz J, Krogh A, Palmer RG (1991) Introduction to the theory of neural computation. Addison-Wesley, Reading, Mass

    Google Scholar 

  • Hubel D, Wiesel T (1962) Receptive fields, binocular interaction, and functional architecture in the cat's visual cortex. J Physiol (Lond) 160:106–154

    Article  CAS  Google Scholar 

  • Hummel R, Sundareswaran V (1993) Motion parameter estimation from global flow field data. IEEE Trans Pattern Analysis Machine Intell 15:459–476

    Article  Google Scholar 

  • Karni A, Sagi D (1991) Where practice makes perfect in texture discrimination: evidence for primary visual cortex plasticity. Proc Natl Acad Sci USA 88:4966–4970

    Article  CAS  Google Scholar 

  • Lehky SR, Sejnowski T (1990) Neural model of stereoacuity and depth inerpolation based on a distributed representation of stereo disparity. J Neurosci 10:2281–2299

    Article  CAS  Google Scholar 

  • Maunsell JHR, Essen DC van (1983) Functional properties of neurons in the middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. J Neurophysiol 49:1127–1147

    Article  CAS  Google Scholar 

  • McKee SP, Westheimer G (1978) Improvement in vernier acuity with practice. Percept Psychophys 24:258–262

    Article  CAS  Google Scholar 

  • Moody J, Darken CJ (1989) Fast learning in networks of locally-tuned processing units. Neural Comput 1:281–294

    Article  Google Scholar 

  • Newsome WT, Paré EB (1988) A selective impairment of motion perception following lesions of the middle temporal visual area. J Neurosci 8:2201–2211

    Article  CAS  Google Scholar 

  • Newsome WT, Britten KH, Movshon JA (1989a) Neuronal correlates of a perceptual decision. Nature 341:52–54

    Article  CAS  Google Scholar 

  • Newsome WT, Britten KH, Movshon JA, Shadlen NM (1989b) Single neurons and the perception of visual motion. In: Lam DMK, Gilbert CD (eds) Neural mechanisms of visual perception: proceedings of the retinal research foundation. Portfolio Publishing, Huntington, NY, pp 171–198

    Google Scholar 

  • Poggio T (1990) A theory of how the brain might work. Cold Spring Harbor Symp Quant Biol 55:899–910

    Article  CAS  Google Scholar 

  • Poggio T, Girosi F (1990) Networks for approximation and learning. Proc IEEE 78:1481–1497

    Article  Google Scholar 

  • Poggio T, Fahle M. Edelman S (1992) Fast perceptual learning in visual hyperacuity. Science 256:1018–1021

    Article  CAS  Google Scholar 

  • Prazdny K (1980) Egomotion and relative depth from optical flow. Biol Cybern 36:87–102

    Article  CAS  Google Scholar 

  • Ramachandran VS, Braddick O (1973) Orientation-specific learning in stereopsis. Perception 2:371–376

    Article  CAS  Google Scholar 

  • Rieger JH, Lawton DT (1985) Processing differential image motion. J Opt Soc Am A 2:354

    Article  CAS  Google Scholar 

  • Salzman CD, Newsome WT (1994) Neural mechanisms for forming a perceptual decision. Science 264:231–237

    Article  CAS  Google Scholar 

  • Sundareswaran V, Vaina LM (1995) Learning direction in global motion: two classes of psychophysically-motivated models. In: Tesauro G, Touretzky D, Leen T (eds) Advances in neural information processing systems 7. 7:917–924, The MIT Press, Cambridge, Mass.

    Google Scholar 

  • Vaina LM, Sundareswaran V, Harris J (1995) Learning to ignore: psychophysics and computational modeling of fast learning of direction in noisy motion stimuli. Cogn Brain Res 2:155–163

    Article  CAS  Google Scholar 

  • Vogels R, Orban GA (1985) The effect of practice on the oblique effect in line orientation judgements. Vis Res 25:1679–1687

    Article  CAS  Google Scholar 

  • Weiss Y, Edelman S, Fahle M (1993) Models of perceptual learning in vernier hyperacuity. Neural Comput 5:695–718

    Article  Google Scholar 

  • Zohary E, Celebrini S, Britten KH, Newsome WT (1994) Neuronal plasticity that underlies improvement in perceptual performance. Science 263:1289–1292

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sundareswaran, V., Vaina, L.M. Adaptive computational models of fast learning of motion direction discrimination. Biol. Cybern. 74, 319–329 (1996). https://doi.org/10.1007/BF00194924

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00194924

Keywords

Navigation