Skip to main content
Log in

A model of the saccadic sensorimotor system of salamanders

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

A model of the saccadic system of salamanders on the basis of electrophysiological and anatomical results is presented. The model includes centers found to be significant for the guidance of saccades in these comparatively simple vertebrates. In particular, these are the optic tectum, the bulbar reticular formation and the motor system. The latter consists of two pairs of neck-muscles, an epaxial and a hypaxial one driven by their respective motoneurons. The model includes a visual, a sensori-motor, and a motor level. At the sensory level, the retinal coordinates are transferred to the optic tectum to establish an orthogonal map of visual angles. A secondary visual map of the ipsilateral eye with a pointsymmetrical organization exists in addition. The premotor system of the tectum was modelled according to an ensemble-coding principle. Thus, local activation of the visual map results in recruitment of an appropriate number of tectal premotor units. Simulation of the model reproduces correct metric properties of salamander saccades under varying stimulus presentations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An der Heiden U, Roth G (1987) Mathematical model and simulation of retina and tectum opticum of lower vertebrates. Acta Biotheor 36:179–212

    Google Scholar 

  • Ewert J-P (1967) Aktivierung der Verhaltensfolge beim Beutefang der Erdkröte Bufo bufo L. durch elektrische Mittelhirnreizung. Z Vergl Physiol 54:455–481

    Google Scholar 

  • Ewert J-P (1970) Neural mechanism of prey-catching and avoidance behavior in the toad Bufo bufo L.. Brain Behav Evol 3:36–56

    Google Scholar 

  • Ewert J-P (1984) Tectal mechanisms that underlie prey-catching and avoidance behaviors in toads. In: Vanegas H (eds) Comparative neurology of the optic tectum. Plenum Press, New York, pp 247–416

    Google Scholar 

  • Finkenstädt T, Ewert J-P (1983) Processing of area dimensions of visual key stimuli by tectal neurons in Salamandra salamandra. J. Comp Physiol 153:85–98

    Google Scholar 

  • Finkenstädt T, Ebbesson SOE, Ewert J-P (1983) Projections to the midbrain tectum in Salamandra salamandra L. Cell Tiss Res 234:39–55

    Google Scholar 

  • Fox B, Manteuffel G (1992) Tectal cells sensitive for motion parallax in a salamander. In: Eisner N, Richter DW (eds) Rhythmogenesis in neurons and networks, Thieme, Stuttgart, p 363

    Google Scholar 

  • Francis ETB (1934) The anatomy of the salamander. Oxford at the Clarendon Press, England

    Google Scholar 

  • Gaillard F, Garcia R, Roussel H (1988) First neurophysiological approach to the retino-tectal projections in Discoglossus pictus (Anura). J Comp Physiol 162:435–441

    Google Scholar 

  • Gaze RM, Jacobson M (1962) The projection of the binocular visual field on the optic tecta of the frog. Q J Exp Physiol Cogn Med Sci 47:273–280

    Google Scholar 

  • Grüsser O-J, Grüsser-Cornehls U (1968) Neurophysiologische Grundlagen visueller angeborener Auslösemechanismen beim Frosch. Z Vergl Physiol 59: 1–24

    Google Scholar 

  • Harris WA (1980) The effects of eliminating impulse activity on the development of the retino-tectal projections in salamanders. J Comp Neurol 194:303–317

    Google Scholar 

  • Herrick CJ (1948) The brain of the tiger salamander Ambystoma tigrinum. Univ Chicago Press, Chicago

    Google Scholar 

  • Himstedt W (1967) Experimentelle Analyse der optischen Sinnesleistungen im Beutefangverhalten der einheimischen Urodelen. Zool Jb Physiol 73:281–320

    Google Scholar 

  • Himstedt W (1969) Zur Funktion eines Reizfiltermechanismus im visuellen System der Urodelen. Z Vergl Physiol 62:197–204

    Google Scholar 

  • Himstedt W, Fischerleitner E (1975) Die Antworten von Retinaneuronen auf Farbreize bei Urodelen. Zool Jahrb Physiol 79:128–147

    Google Scholar 

  • Himstedt W, Tempel P, Weiler J (1978) Responses of salamanders to stationary visual patterns. J. Comp Physiol 124:49–52

    Google Scholar 

  • Himstedt W, Heller K, Manteuffel G (1987) Neuronal responses to moving visual stimuli in different thalamic and midbrain centers of Salamandra salamandra L. Zool Jb Physiol 91:243–256

    Google Scholar 

  • Ingle D (1968) Visual releasers of prey-catching behavior in frogs and toads. Brain Behav Evol 1:500–518

    Google Scholar 

  • Jordan M, Matsushima T, Roth G (1990) Does the toad's tectum have a motor map? In: Elsner N, Roth G (eds) Brain, perception, cognition. Thieme, Stuttgart, p 86

    Google Scholar 

  • Kostyk SK, Grobstein P (1982) Visual orienting deficits in frogs with various unilateral lesions. Behav Brain Res 6:379–388

    Google Scholar 

  • Kostyk SK, Grobstein P (1987) Neuronal organization underlying visually elicited prey orienting in the frog. III. Evidence for the existence of an uncrossed descending tectofugal parthway. Neuroscience 21:83–96

    Google Scholar 

  • Mallot HA, Seelen W von (1989) Why cortices? Neural networks for visual information processing. In: Ewert J-P, Arbib MA (eds) Visuomotor coordination. Plenum Press, New York, pp 357–382

    Google Scholar 

  • Manteuffel G (1984) A “physiological” model for the salamander horizontal optokinetic reflex. Brain Behav Evol 25:197–205

    Google Scholar 

  • Manteuffel G (1989) Compensation of visual background motion in salamanders. In: Ewert J-P, Arbib MA (eds) Visuomotor coordination. Plenum Press, New York, pp 311–340

    Google Scholar 

  • Manteuffel G (1991) A biological visuo-motor system: how dissimilar maps interact to produce behavior. In: Meyer J-A, Wilson SW (eds) Proc First Intern Conf on Simulation of Adaptive Behavior: From Animals to Animats, MIT-Press, Cambridge, pp 120–126

    Google Scholar 

  • Manteuffel G (1992) Control of gaze in salamanders. In: Berthoz A, Vidal PP, Graf W (eds) The head-neck sensory motor system. Oxford University Press, New York, pp 85–90

    Google Scholar 

  • Manteuffel G, Fox B, Roth G (1989) Topographic relationships of ipsiand contralateral visual inputs to the rostral tectum opticum in the salamander Plethodon jordani indicate the presence of a horopter. Neurosci Lett 107:105–109

    Google Scholar 

  • Manteuffel G, Naujoks-Manteuffel C (1990) Anatomical connections and electrophysiological properties of toral and dorsal tegmental neurons in the terrestrial urodele Salamandra salamandra. J Hirnforsch 31:65–76

    Google Scholar 

  • McIlwain JT (1982) Lateral spread of neural excitation during microstimulation in intermediate gray layer of cat's superior colliculus. J Neurophysiol 47:167–178

    Google Scholar 

  • Naujoks-Manteuffel C, Manteuffel G (1988) The origins of descending projections to the medulla oblongata and rostral medulla spinalis in the urodele Salamandra salamandra (Amphibia). J Comp Neurol 273:187–206

    Google Scholar 

  • Naujoks-Manteuffel C, Manteuffel G (1990) Quantitative distribution of descending tectal efferent cells in salamanders. Neurosci Lett 118:103–106

    Google Scholar 

  • Robinson DA (1972) Eye movements evoked by collicular stimulation in the alert monkey. Vis Res 12:1795–1808

    Google Scholar 

  • Robinson DA (1986) Is the oculomotor system a cartoon of motor ontrol? In: Freund HJ, Cohen B, North J (eds) Progress in brain research, vol 64. Elsevier, Amsterdam, pp 411–417

    Google Scholar 

  • Roth G (1976) Experimental analysis of the prey catching behavior of Hydromantes italicus Dunn (Amphibia, Plethodontidae). J Comp Physiol 109:47–58

    Google Scholar 

  • Roth G (1982) Responses in the optic tectum of the salamander Hydromantes italicus to moving prey stimuli. Exp Brain Res 45:386–392

    Google Scholar 

  • Roth G (1987) Visual behavior in salamanders. Studies of brain function, vol 14. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Roth G, Naujoks-Manteuffel C, Grunwald W (1990) Cytoarchitecture of the tectum mesencephali in salamanders: a Golgi and HRP study. J Comp Neurol 291:27–42

    Google Scholar 

  • Seelen W von, Mallot HA, Giannakopoulos F (1987) Characteristics of neuronal systems in the visual cortex. Biol Cybern 56:37–49

    Google Scholar 

  • Sparks DL (1986) Translation of sensory signals into commands for control of saccadic eye movements: role of primate superior colliculus. Physiol Rev 66:118–171

    Google Scholar 

  • Stuermer CAO (1988) Retinotopic organization of the developing retinotectal projection in the zebrafish embryo. J Neurosci 8:4513–4530

    Google Scholar 

  • Van Gisbergen JAM, Van Opstal AJ, Tax AAM (1987) Collicular ensemble coding of saccades based on vector summation. Neuroscience 21:541–555

    Google Scholar 

  • Van Opstal AJ, Van Gisbergen JAM (1989a) A nonlinear model for collicular spatial interactions underlying the metrical properties of electrically elicited saccades. Biol Cybern 60:171–183

    Google Scholar 

  • Van Opstal AJ, Van Gisbergen JAM (1989b) A model for collicular efferent mechanisms underlying the generation of saccades. Brain Behav Evol 33:90–94

    Google Scholar 

  • Werner C, Himstedt W (1985) Mechanism of head orientation during prey capture in salamander Salamandra salamandra L.. Zool Jb Physiol 89:359–368

    Google Scholar 

  • Wiggers W (1991) Elektrophysiologische, neuroanatomische und verhaltensphysiologische Untersuchungen zur visuellen Verhaltenssteuerung bei lungenlosen Salamandern. Doctoral thesis, Universität Bremen

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manteuffel, G., Roth, G. A model of the saccadic sensorimotor system of salamanders. Biol. Cybern. 68, 431–440 (1993). https://doi.org/10.1007/BF00198775

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00198775

Keywords

Navigation