Skip to main content
Log in

Optimization by hierarchical mutant production

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Inspired by the successful description of the first steps of molecular evolution by the quasispecies theory and the successful application of quasispecies-like algorithms to optimization problems, we propose a hierarchically organized algorithm. This new algorithm is able to solve a spin glass and a travelling salesman problem using only point mutations. Furthermore, it performs better under comparable circumstances than the ordinary quasispecies algorithm. Depending on the structure of the fitness landscape of the examined problem under consideration the hierarchically organized algorithm proves to be much more suitable than a simple quasispecies algorithm, especially in clustered landscapes. Tuning the error rates reveals the critical minimum copy fidelity necessary to guarantee optimization. We propose to incorporate hierarchical concepts into optimization algorithms inspired by biological evolution, such as genetic algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambati BK, Ambati J. Mokhatar MM (1991) Heuristic combinatorial optimization by simulated darwinian evolution: a polynomial time algorithm for the travelling salesman. Biol Cybern 65:31–35

    Google Scholar 

  • Bauer G (1990) Biochemische Verwirklichung und Analyse von kontrollierten Evolutionsexperimenten mit RNA-Quasispezies in vitro. Dissertation, University of Braunschweig

  • Beveridge GSG, Schlechter RS (1970) Optimization theory and practise. McGraw-Hill Kogakusha, Tokyo

    Google Scholar 

  • Biebricher CK, Eigen M, Gardiner Jr WC (1983) Kinetics of RNA replication. Biochemistry 22:2544–2559

    Google Scholar 

  • Biebricher CK, Eigen M, Gardiner Jr WC (1984) Kinetics of RNA replication: plus-minus asymmetry and double strand formation. Biochemistry 23:3186–3194

    Google Scholar 

  • Biebricher CK, Eigen M, Gardiner Jr WC (1985) Kinetics of RNA replication: competition and selection among self-replicating RNA species. Biochemistry 24:6550–6560

    Google Scholar 

  • Bremermann HJ, Rogson M, Salaf S (1966) Global properties of evolution processes. In: Patecc HH, Edelsack EA, Fein L, Callahan AB (eds) Natural automata and useful simulations. Spartan Books, Washington, pp 3–41

    Google Scholar 

  • Eiben AE, Aarts EHL, van Hee KM (1989) A general theory of genetic algorithms. Eindhoven University of Technology, computing science notes

  • Eigen M (1971) Self-organization of matter and the evolution of biological macromolecules. Naturwissenschaften 58:1748–1766

    Google Scholar 

  • Eigen M (1985) Macromolecular evolution dynamical ordering in sequence space. Ber Bunsenges Phys Chem 89:658–667

    Google Scholar 

  • Eigen M (1986) The physics of molecular evolution. Chem Scripta 26B:13–26

    Google Scholar 

  • Eigen M, Schuster P (1979) The hypercycle a principle of natural self-organization. Springer Berlin Heidelberg New York

    Google Scholar 

  • Eigen M, Schuster P, McCaskill J (1988) Molecular quasi-species. J Phys Chem 92:6881–6891

    Google Scholar 

  • Eigen M, Schuster P, McCaskill J (1989) The molecular quasispecies. Adv Chem Phys 75:149–263

    Google Scholar 

  • Fogel DB (1988) An evolutionary approach to the travelling salesman problem. Biol Cybern 60:139–144

    Google Scholar 

  • Fontana W, Schnabl W, Schuster P (1989) Physical aspects of evolutionary optimization and adaptation. Phys Rev A 40:3301–3321

    Google Scholar 

  • Fontana W, Griesmacher T, Schnabl W, Stadler PF (1991) Statistics of landscapes based on free energies, replication and degradation rate constants of RNA secondary structure. Monatsh Chem 122:795–819

    Google Scholar 

  • Galar R (1985) Handicapped individua in evolutionary processes. Biol Cybern 51:1–9

    Google Scholar 

  • Galar R (1991) Simulation of local evolutionary dynamics of small populations. Biol Cybern 65:37–45

    Google Scholar 

  • Goldberg DE (1989) Genetic algorithms. Addison-Wesley, Reading, Mass

    Google Scholar 

  • Grefenstette JJ, Gopal R, Rosmaita B, Van Gucht D (1985) Genetic algorithms for the travelling salesman problem. In: Grefenstette JJ (ed) Proceedings of an international conference on genetic algorithms and their applications, Carnegie-Mellon University, pp 160–168

  • Grötschel M (1984) Polyedrische Kombinatorik und Schnittebenenverfahren. Preprint no. 38, University of Augsburg

  • Hamming RW (1986) Coding and information theory, 2nd edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Holland OA (1987) Schnittebenenverfahren für Travelling-Salesman und verwandte probleme. Dissertation, University of Bonn

  • Holland JH (1975) Adaption in natural and artificial systems. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Kirkpatrick S (1977) Frustration and ground state in spin glasses. Phys Rev B 16:4630–4641

    Google Scholar 

  • Kirkpatrick S, Gelatt CD, Vecchi M (1983) Optimization by simulated annealing. Science 220:671–680

    Google Scholar 

  • Lawler EL, Lenstra JK, Rinooy Kan AHG, Shmoys DB (eds) (1985) The travelling salesman problem. Wiley, Chichester

    Google Scholar 

  • Lin S, Kernighan BW (1973) An effective heuristic algorithm for the travelling-salesman problem. Operation Res 21:498–421

    Google Scholar 

  • McCaskill J (1984) A stochastic theory of macromolecular evolution. Biol Cybern 50:63–73

    Google Scholar 

  • Nowak M, Schuster P (1989) Error thresholds of replication in finite populations: mutation frequencies and the onset of Muller's ratchet. J Theor Biol 137:375–395

    Google Scholar 

  • Rechenberg I (1973) Evolutionsstrategie. frommann-holzboog, Stuttgart

    Google Scholar 

  • Rokhsar DS, Anderson PW, Stein DL (1986) Self-organization in prebiological systems: simulations of a model for the origin of genetic information. J Mol Evol 23:119–126

    Google Scholar 

  • Sankoff D, Kruskal JP (eds) (1983) Time warps, string edits and macro molecules: the theory and practise of sequence comparison. Addison-Wesley, Reading, Mass

    Google Scholar 

  • Schuster P, Sigmund K (1985) Dynamics of evolutionary optimization. Ber Bunsenges Phys Chem 89:668–682

    Google Scholar 

  • Schwefel HP (1968) Experimentelle Optimierung einer Zweiphasendüse. Bericht 35 zum MHD-Staustrahlrohr, AEG Research Institute, Berlin

    Google Scholar 

  • Schwefel HP (1981) Numerical optimization of computer models. Wiley, Chichester

    Google Scholar 

  • Sherrington D, Kirkpatrick S (1975) Solvable model of a spin glass. Phys Rev Lett 35:1792–1796

    Google Scholar 

  • Sorkin GB (1988) Combinatorial optimization, simulated annealing and fractals. IBM Res Rep RC13674 (no. 601253)

  • Spiegelman S (1970) The Harvey lectures, series 64. Academic Press, New York

    Google Scholar 

  • Stadler PF, Schnabl W (1992) The landscape of the travelling salesman problem Phys Lett A 161:337–344

    Google Scholar 

  • Strunk G (1992) Automatisierte Evolutionsexperimente in vitro und natürliche Selektion unter kontrollierten Bedingungen mit Hilfe der Serial Transfer Technik Dissertation, University of Braunschweig

  • Ulder NLJ, Aarts EHL, Bandelt HJ, van Laarhoven PJM, Pesch E (1991) Genetic local search algorithms for the travelling salesman problem. In: Schwefel HP, Männer R (eds) Parallel problem solving from nature. (Lecture notes in computer science, vol 496) Springer, Berlin Heidelberg New York

    Google Scholar 

  • Wang Q (1987) Optimization by simulating molecular evolution. Biol Cybern 57:95–101

    Google Scholar 

  • Weinberger ED (1990) Correlated and uncorrelated fitness landscapes and how to tell the difference. Biol Cybern 63:325–336

    Google Scholar 

  • Weinberger ED, Stadler PF (1993) Why some fitness landscapes are fractal. J Theor Biol (in press)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schober, A., Thuerk, M. & Eigen, M. Optimization by hierarchical mutant production. Biol. Cybern. 69, 493–501 (1993). https://doi.org/10.1007/BF01185421

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01185421

Keywords

Navigation