Skip to main content
Log in

Two and three dimensional reductions of the Hodgkin-Huxley system: separation of time scales and bifurcation schemes

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

We study two different two-dimensional reductions of the Hodgkin-Huxley equations. We show that they display the same qualitative bifurcation scheme as the original equations but overestimate the current range where periodic emission occurs. This is essentially due to the assumption that the evolution of the sodium activation variable m is instantaneous with respect to the dynamics of the variables h and n, an hypothesis that breaks down at high values of the injected current. To prove this point we compare the current-amplitude relation, the current-frequency relation, and the shapes of individual spikes for the two reduced models to the results obtained for the original Hodgkin-Huxley model and for a three dimensional model with instantaneous sodium activation. We show that a more satisfying agreement with the original Hodgkin-Huxley equations is obtained if we modify the evolution equation for the potential by incorporating the prominent features of the dynamics of m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hodgkin AL, Huxley AF (1952) J Physiol 117:500

    Google Scholar 

  2. Tuckwell HC (1988) Introduction to theoretical neurobiology. Cambridge University Press, Cambridge

    Google Scholar 

  3. Cronin J (1987) Mathematical aspects of Hodgkin-Huxley neural theory. Cambridge University Press, Cambridge

    Google Scholar 

  4. Rogawski MA (1985) TINS 214–219

  5. Connor JA, Stevens CF (1971) J Physiol 213:1

    Google Scholar 

  6. Connor JA, Walker D, McKown R (1977) J Biophys 18:81

    Google Scholar 

  7. Hassard BD (1978) J Theoret Biol 71:401

    Google Scholar 

  8. Hassard BD (1981) Theory and applications of the Hopf bifurcation, Cambridge University Press, Cambridge

    Google Scholar 

  9. Troy WC (1978) Q Appl Math 73–83

  10. Hopf E, (1942) Berh Verh Sachs Akad Wiss Leipzig Math-Nat 94:3

    Google Scholar 

  11. Mardsen JE, McCracken M (1976) The Hopf bifurcation and its applications. Appl Math Sci, Springer, Berlin Heidelberg New York, 19

    Google Scholar 

  12. Rinzel J, Ermentrout GB (1989) Analysis of neural excitability and oscillations. In: Koch C, Segev I (eds) Methods of neuronal modeling. MIT Press, Cambridge

    Google Scholar 

  13. Hansel D, Mako G, Memiev C (1992) Phase dynamics for weakly coupled Hodgkin-Huxley neurons, submitted to Physical Review Letters

  14. Fitzhugh R (1961) J Biophys 1:445

    Google Scholar 

  15. Nagumo J, Arimoto S, Yoshizawa S (1962) Proc JRE 50:2061

    Google Scholar 

  16. Troy WC (1976) J Mathe Anal Appl 54:678

    Google Scholar 

  17. Kokoz YM, Krinskii VI (1973) Biofizika 18(5):878

    Google Scholar 

  18. Krinskii VI, Kokoz YM (1973) Biofizika 18(3):506

    Google Scholar 

  19. Kepler TB (1990) Mathematical reduction of complex neural models, proceedings of the Second STG Conference, Waltham, USA

  20. Abott LF, Kepler TB (1989) Model neurons: from HodgkinHuxley to Hopfield, Proceedings of the XI Sitges Conference, Sitges, Spain

  21. Morris C, Lecar H (1981) J Biophys 35:193

    Google Scholar 

  22. Jahnsen H, Llinas R (1984) J Physiol 349:227

    Google Scholar 

  23. Plant RE, Kim M (1976) J Biophys 16:227

    Google Scholar 

  24. Epstein IR, Marder E (1990) Biol Cybern 63:25

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meunier, C. Two and three dimensional reductions of the Hodgkin-Huxley system: separation of time scales and bifurcation schemes. Biol. Cybern. 67, 461–468 (1992). https://doi.org/10.1007/BF00200990

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00200990

Keywords

Navigation