Skip to main content
Log in

The relationship between short-term memory capacity and EEG power spectral density

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Multiplying memory span by mental speed, we obtain the information entropy of short-term memory capacity, which is rate-limiting for cognitive functions and corresponds with EEG power spectral density. The number of EEG harmonics (n = 1, 2,…, 9) is identical with memory span, and the eigenvalues of the EEG impulse response are represented by the zero-crossings up to the convolved fundamental, the P300. In analogy to quantum mechanics the brain seems to be an ideal detector simply measuring the energy of wave forms. No matter what the stimulus is and how the brain behaves, the metric of signal and memory can always be understood as a superposition of states of different energy and their eigenvalues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Başar E (eds) (1988) Dynamics of sensory and cognitive processing by the brain. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Båth M (1974) Spectral analysis in geophysics. Elsevier, Amsterdam

    Google Scholar 

  • Bennett EF (1974) The fourier transform of evoked responses. Nature 239:407–408

    Google Scholar 

  • Cavanagh JP (1972) Relation between the immediate memory span and the memory search rate. Psychol Rev 79:525–530

    Google Scholar 

  • Crick FHC, Marr DC, Poggio T (1981) An information-processing approach to understanding the visual cortex. In: Schmitt FO, Worden EG, Edelman G, Dennis C (eds) The organization of the cerebral cortex. MIT Press, Cambridge, pp 505–535

    Google Scholar 

  • Ertl JP, Schafer EWP (1969) Brain response correlate of psychometric intelligence. Nature 223:421–422

    Google Scholar 

  • Eysenck HJ (1986) The theory of intelligence and the psychophysiology of cognition. In: Sternberg RJ (eds) Advances in the psychology of human intelligence, vol 3. Erlbaum, Hillsdale NJ, pp 1–34

    Google Scholar 

  • Eysenck JH (1987) Speed of information processing, reaction time, and the theory of intelligence. In: Vernon PA (eds) Speed of information-processing and intelligence. Ablex, Norwood, pp 21–68

    Google Scholar 

  • Flinn JM, Kirsch AD, Flinn EA (1977) Correlations between intelligence and the frequency content of the evoked potential. Physiol Psychol 5:11–15

    Google Scholar 

  • Fogleman G (1987) Quantum strings. Am J Phys 55:330–336

    Google Scholar 

  • Gasser T, Von Lucadou I, Verleger R, Bächer P (1983) Correlating EEG and IQ: a new look at an old problem using computerized EEG parameters. Electroencephal Clin Neurophysiol 55:493–504

    Google Scholar 

  • Geissler H-G (1987) The temporal architecture of central information processing: evidence for a tentative time-quantum model. Psychol Res 49:99–106

    Google Scholar 

  • Geissler H-G (1990) Foundations of quantized processing. In: Geissler H-G (eds) Psychophysical explorations of mental structures. Hogrefe and Huber, Toronto, pp 193–210

    Google Scholar 

  • Gibbs FA, Davis H, Lennox WG (1935) The electroencephalogram in epilepsy and in conditions of impaired consciousness. Arch Neurol Psychiatry (Chic) 34:1133–1148

    Google Scholar 

  • Gibbs WR (1981) The eigenvalues of a deterministic neural net. Math Biosci 57:19–34

    Google Scholar 

  • Goebel PR (1990) The mathematics of mental rotations. J Math Psychol 34:435–444

    Google Scholar 

  • Haken H (1988) Information and self-organization: a macroscopic approach to complex systems. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Haier RJ, Robinson DL, Braden W (1984) Electrical potentials of the cerebral cortex and psychometric intelligence. Person Individ Diff 4:591–599

    Google Scholar 

  • Harwood E, Naylor GFK (1969) Rates of information transfer in elderly subjects. Austr J Psychol 21:127–136

    Google Scholar 

  • Hendrickson DA, Hendrickson AE (1980) The biological basis of individual differences in intelligence. Person Individ Diff 1:3–33

    Google Scholar 

  • Jerri AJ (1977) The Shannon sampling theorem — its various extensions and applications: a tutorial review. Proc IEEE 65:1565–1596

    Google Scholar 

  • Johnson R (1988) The amplitude of the P300 component of the event-related potential: review and synthesis. Adv Pscyhophysiol 3:69–137

    Google Scholar 

  • Jones MR (1976) Time, our lost dimension: toward a new theory of perception, attention and memory. Psychol Rev 83:323–355

    Google Scholar 

  • Kac M (1966) Can one hear the shape of a drum? Am Math Monthly 73 (part II): 1–23

    Google Scholar 

  • Koenderink JJ, Van Doom AJ (1990) Receptive field families. Biol Cybern 63:291–297

    Google Scholar 

  • Kronland-Martinet R, Morley J, Grossmann A (1987) Analysis of sound patterns through wavelet transforms. Int J Pattern Recogn Artific Intell 1:273–302

    Google Scholar 

  • Lebedev AN (1990) Cyclic neural codes of human memory and some quantitative regularities in experimental psychology. In: Geissler H-G (eds) Psychophysical explorations of mental structures. Hogrefe and Huber, Toronto, pp 303–310

    Google Scholar 

  • Lehrl S, Fischer B (1988) The basic parameters of human information processing: their role in the determination of intelligence. Person Individ Diff 9:883–896

    Google Scholar 

  • Lehrl S, Fischer B (1990) A basic information psychological parameter for reconstruction of concepts of intelligence (BIP). Eur J Person 4:259–286

    Google Scholar 

  • Lehrl S, Gallwitz A, Blaha L, Fischer B (1991) Geistige Leistungsfähigkeit. Theorie und Messung der biologischen Intelligenz mit dem Kurztest KAI. Vless, Ebersberg

    Google Scholar 

  • Liberson WT (1985) Regional spectral analysis of EEG and ‘active’ and ‘passive’ intelligence. In: Giannitrapani D. The electrophysiology of intellectual functions. Karger, Basel, pp 153–176

    Google Scholar 

  • Miller GA (1956) The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol Rev 63:81–97

    Google Scholar 

  • Niederjohn RJ, Krutz MW, Brown BM (1987) An experimental investigation of the perceptual effects of altering the zero-crossings of a speech signal. IEEE Trans Acoust Speech Signal Process 35:618–625

    Google Scholar 

  • Pascual-Leone J (1970) A mathematical model for the transition in Piagetian developmental stages. Acta Psychol 32:301–345

    Google Scholar 

  • Penrose R (1990) The emperor's new mind — concerning computers, minds, and the laws of physics. Behav Brain Sci 13:643–706

    Google Scholar 

  • Perry NW Jr, McCoy JC, Cunningham WR, Falgout JC, Street WJ (1976) Multivariate visual evoked response correlates of intelligence. Psychophysiology 13:323–329

    Google Scholar 

  • Piaget J (1971) The theory of stages in cognitive development. In: Green Ed (eds) Measurement and Piaget. McGraw Hill, New York, pp 1–11

    Google Scholar 

  • Polich J, Howard L, Starr A (1983) P300 latency correlates with digit span. Psychophysiology 20:665–669

    Google Scholar 

  • Resnikoff HL (1989) The illusion of reality. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Robinson EA (1982) A historical perspective of spectrum estimation. Proc IEEE 70:885–907

    Google Scholar 

  • Rothenberger A, Meyer-Dittrich M (1984) Beziehungen zwischen elektrischer Hirnaktivität und Intelligenz im Kindesalter. Z Kinder-Jugendpsychiatrie 12:79–104

    Google Scholar 

  • Saltzberg B, Burch NR (1971) Period analytic estimates of the power spectrum: a simplified EEG domain procedure. Electroencephal Clin Neurophysiol 30:568–570

    Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell System Technol J 27:379–432 and 623–656

    Google Scholar 

  • Stroud JM (1988) The fine structure of psychological time. In: Quastler H (eds) Information theory in psychology. Free Press, Glencoe, pp 174–207

    Google Scholar 

  • Szilard L (1929) Über die Entropieverminderung in einem thermodynamischen System bei Eingriff intelligenter Wesen. Z Phys 53:840–856

    Google Scholar 

  • Thom R (1975) Structural stability and morphogenesis. Benjamin Cummings, Reading, MA

    Google Scholar 

  • Vichnevetsky R (1988) Quantum properties of wave propagation in periodic structures. Syst Anal Model Simul 5:103–129

    Google Scholar 

  • Weiss V (1986) From memory span and mental speed toward the quantum mechanics of intelligence. Person Individ Diff 7:737–749

    Google Scholar 

  • Weiss V (1987) The quantum mechanics of EEG-brain dynamics and short-term memory. Biol Zbl 106:401–408

    Google Scholar 

  • Weiss V (1989) From short-term memory capacity toward the EEG resonance code. Person Individ Diff 10:501–508

    Google Scholar 

  • Weiss V (1990) The spatial metric of brain underlying the temporal metric of EEG and thought. Gegenbaurs Morphol Jahrb 136:79–87

    Google Scholar 

  • Weiss V (1992) Major genes of general intelligence. Person Individ Diff 13:1115–1134

    Google Scholar 

  • Weiss V, Lehrl S, Frank HG (1986) Psychogenetik der Intelligenz. Modernes Lernen, Dortmund

    Google Scholar 

  • Wentzel G (1926) Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik. Z Phys 38:518–529

    Google Scholar 

  • Yu FTS (1976) Optics and information theory. Wiley, New York

    Google Scholar 

  • Yuille AL, Poggio TA (1988) Scaling and fingerprint theorems for zero crossings. Adv Comp Vision 2:47–78

    Google Scholar 

  • Zeevi YY, Gavriely A, Shamai S (1987) Image representation by zero and sine-wave crossings. J Opt Soc Am A 4:2045–2060

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss, V. The relationship between short-term memory capacity and EEG power spectral density. Biol. Cybern. 68, 165–172 (1992). https://doi.org/10.1007/BF00201438

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00201438

Keywords

Navigation