Skip to main content
Log in

Motion anisotropies and heading detection

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

In motion-processing areas of the visual cortex in cats and monkeys, an anisotropic distribution of direction selectivities displays a preference for movements away from the fovea. This ‘centrifugal bias’ has been hypothetically linked to the processing of optic flow fields generated during forward locomotion. In this paper, we show that flow fields induced on the retina in many natural situations of locomotion of higher mammals are indeed qualitatively centrifugal in structure, even when biologically plausible eye movements to stabilize gaze on environmental targets are performed. We propose a network model of heading detection that carries an anisotropy similar to the one found in cat and monkey. In simulations, this model reproduces a number of psychophysical results of human heading detection. It suggests that a recently reported human disability to correctly identify the direction of heading from optic flow when a certain type of eye movement is simulated might be linked to the noncentrifugal structure of the resulting retinal flow field and to the neurophysiological anisotropies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albright TD (1989) Centrifugal directionality bias in the middle temporal visual area (MT) of the macaque. Visual Neurosci: 177–188

  • Ball K, Sekuler R (1980) Human vision favors centrifugal motion. Perception 9:317–325

    Google Scholar 

  • Bauer R, Hoffmann K-P Huber HP, Mayr M (1989) Different anisotropies of movement direction in upper and lower layers of the cat's area 18 and their implications for global optic flow processing. Exp Brain Res 74:395–401

    Google Scholar 

  • Berg AV van den (1992) Robustness of perception of heading from optic flow. Vision Res 32:1285–1296

    Google Scholar 

  • Berg AV van den (1993) Perception of heading. Nature 365:497–498

    Google Scholar 

  • Brenner E, Rauschecker JP (1990) Centrifugal motion bias in the cat's lateral suprasylvian visual cortex is independent of early flow field exposure. J Physiol 423:641–660

    Google Scholar 

  • Bülthoff H, Little J, Poggio T (1989) A parallel algorithm for real-time computation of optical flow. Nature 337:549–553

    Google Scholar 

  • Crowell JA, Banks MS (1993) Perceiving heading with different retinal regions and types of optic flow. Percep Psychophys 53:325–337

    Google Scholar 

  • Cutting JE, Springer K, Braren PA, Johnson SH (1992) Wayfinding on foot from information in retinal, not optical, flow. J Exp Psych Gen 121:41–72

    Google Scholar 

  • Duffy CJ, Wurtz RH (1991) Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. J Neurophysiol 65:1329–1345

    Google Scholar 

  • Edwards M, Badcock DR (1993) Asymmetries in the sensitivity to motion in depth: a centripetal bias. Perception 22:1013–1023

    Google Scholar 

  • Fahle M, Wehrhahn C (1991) Motion perception in the peripheral visual field. Graefes Arch Clin Exp Ophthalmol 229:430–436

    Google Scholar 

  • Georgeson M, Harris MG (1978) Apparent foveofugal drift of counterphase gratings. Perception 7:527–536

    Google Scholar 

  • Gibson JJ (1950) The perception of the visual world. Houghton Mifflin, Boston

    Google Scholar 

  • Graziano MSA, Andersen RA, Snowden R (1994) Tuning of MST neurons to spiral motions. J Neurosci 14:54–57

    Google Scholar 

  • Hatsopoulos NG, Warren WH Jr (1991) Visual navigation with a neural network. Neural Networks 4:303–318

    Google Scholar 

  • Heeger DJ, Jepson A (1992) Subspace methods for recovering rigid motion. I. Algorithm and implementation. IJ Comp Vision 7:95–117

    Google Scholar 

  • Hildreth EC (1992) Recovering heading for visually-guided navigation in the presence of self-moving objects. Philos Trans R Soc Lond Biol 337:305–313

    Google Scholar 

  • Hildreth EC (1984) The measurement of visual motion. MIT, Cambridge, Mass

    Google Scholar 

  • Koenderink JJ, Doom AJ van (1981) Exterospecific component of the motion parallax field. J Opt Soc Am 71:953–957

    Google Scholar 

  • Koenderink JJ, Doom AJ van (1987) Facts on optic flow. Biol Cybern 56:247–254

    Google Scholar 

  • Lagae L, Raiguel S, Orban GA (1993) Speed and direction selectivity of macaque middle temporal neurons. J Neurophysiol 69:19–39

    Google Scholar 

  • Lappe M, Rauschecker JP (1993a) Computation of heading direction from optic flow in visual cortex. In: Giles CL, Hanson SJ, Cowan JD (eds) Advances in neural information processing systems 5. Morgan Kaufmann, New York

    Google Scholar 

  • Lappe M, Rauschecker JP (1993b) A neural network for the processing of optic flow from egomotion in higher mammals. Neural Comp 5:374–391

    Google Scholar 

  • Lappe M, Rauschecker JP (1994) Heading detection from optic flow. Nature 369:712–713

    Google Scholar 

  • Lappe M, Bremmer F, Hoffmann K-P (1994) How to use nonvisual information for optic flow processing in monkey visual cortical area MSTd. In: Marinaro M, Morasso PG (eds) ICANN 94-Proc Int Conf Artif Neur Netw Springer, Berlin Heidelberg New York

  • Longuet-Higgins HC, Prazdny K (1980) The interpretation of a moving retinal image. Proc R Soc Lond Biol 208:385–397

    Google Scholar 

  • Marr D, Ullman S (1981) Directional selectivity and its use in early visual processing. Proc R Soc Lond Biol 211:151–180

    Google Scholar 

  • Mateeff S, Yakimov N, Hohnsbein J, Ehrenstein WH, Bohdanecky Z, Radii T (1991) Selective directional sensitivity in visual motion perception. Vision Res 31:131–138

    Google Scholar 

  • Maunsell JHR, Van Essen DC (1983) Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. J Neurophysiol 49:1127–1147

    Google Scholar 

  • Orban GA, Lagae L, Verri A, Raiguel S, Xiao D, Maes H, Torre V (1992) First-order analysis of optical flow in monkey brain. Proc Natl Acad Sci 89:2595–2599

    Google Scholar 

  • Perrone JA (1986) Anisotropic responses to motion toward and away from the eye. Percept Psychophys 39:1–8

    Google Scholar 

  • Perrone JA (1990) Simple technique for optical flow estimation. J Opt Soc Am [A] 7:264–278

    Google Scholar 

  • Perrone JA (1992) Model for the computation of self-motion in biological systems. J Opt Soc Am [A] 9:177–194

    Google Scholar 

  • Prazdny K (1980) Egomotion and relative depth map from optical flow. Biol Cybern 36:87–102

    Google Scholar 

  • Rauschecker JP (1988) Visual function of the cat's LP/LS subsystem in global motion processing. Prog Brain Res 75:95–108

    Google Scholar 

  • Rauschecker JP, Grünau MW von, Poulin C (1987) Centrifugal organization of direction preferences in the cat's lateral suprasylvian visual cortex and its relation to flow field processing. J Neurosci 7:943–958

    Google Scholar 

  • Raymond JE (1994) Directional anisotropy of motion sensitivity across the visual field. Vision Res 34:1029–1037

    Google Scholar 

  • Regan D, Beverly KI (1982) How do we avoid confounding the direction we are looking and the direction we are moving? Science 215:194–196

    Google Scholar 

  • Reichardt W (1969) Movement perception in insects. In: Reichardt W (eds) Processing of optical data by organisms and machines. Academic Press, London, pp 465–493

    Google Scholar 

  • Rieger JH, Toet L (1985) Human visual navigation in the presence of 3-D rotations. Biol Cybern 52:377–381

    Google Scholar 

  • Royden CS, Banks MS, Crowell JA (1992) The perception of heading during eye movements. Nature 360:583–585

    Google Scholar 

  • Saito H-A, Yukie M, Tanaka K, Hikosaka K, Fukada Y, Iwai E (1986) Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey. J Neurosci 6:145–157

    Google Scholar 

  • Stoffregen TA (1985) Flow structure versus retinal location in the optical control of stance. J Exp Psychol Hum Percept Perform 11:554–565

    Google Scholar 

  • Stoffregen TA (1986) The role of optical velocity in the control of stance. Percept Psychophys 39:355–360

    Google Scholar 

  • Tanaka K, Saito H-A (1989) Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. J Neurophysiol 62:626–641

    Google Scholar 

  • Tanaka K, Hikosaka K, Saito H-A, Yukie M, Fukada Y, Iwai E (1986) Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey. J Neurosci 6:134–144

    Google Scholar 

  • Uras A, Girosi F, Verri A, Torre V (1988) A computational approach to motion perception. Biol Cybern 60:79–87

    Google Scholar 

  • Verri A, Aicardi F (1990) Limit cycles of the two-dimensional motion field. Biol Cybern 64:141–144

    Google Scholar 

  • Verri A, Poggio T (1989) Motion field and optical flow: qualitative properties. IEEE Trans Patt Anal Mach Intell 11:490–498

    Google Scholar 

  • Verri A, Girosi F, Torre V (1989) Mathematical properties of the two-dimensional motion field: from singular points to motion parameters. J Opt Soc Am [A] 6:698–712

    Google Scholar 

  • Verri A, Straforini M, Torre V (1992) Computational aspects of motion perception in natural and artificial vision systems. Philos Trans R Soc Lond [Biol] 337:429–443

    Google Scholar 

  • Wang HT, Mathur BP, Koch C (1989) Computing optical flow in the primate visual system. Neural Comp 1:92–103

    Google Scholar 

  • Warren Jr WH, Hannon DJ (1988) Direction of self-motion is perceived from optical flow. Nature 336:162–163

    Google Scholar 

  • Warren Jr WH, Hannon DJ (1990) Eye movements and optical flow. J Opt Soc Am [A] 7:160–169

    Google Scholar 

  • Warren WH Jr, Kurtz KJ (1992) The role of central and peripheral vision in perceiving the direction of self-motion. Percept Psychophys 51:443–454

    Google Scholar 

  • Werkhoven P, Koenderink JJ (1990) Extraction of motion parallax structure in the visual system I. Biol Cybern 63:185–191

    Google Scholar 

  • Yuille AL, Grzywacz NM (1988) A computational theory for the perception of coherent visual motion. Nature 335:71–74

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lappe, M., Rauschecker, J.P. Motion anisotropies and heading detection. Biol. Cybern. 72, 261–277 (1995). https://doi.org/10.1007/BF00201489

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00201489

Keywords

Navigation