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Abstract. The linear-complexity profile measures the extent to which the initial 
segments ofa keystream sequence can be simulated by linear feedback shift-register 
sequences. To provide a benchmark for the assessment of keystream sequences, a 
probabilistic theory of the linear-complexity profile of random sequences is needed. 
For sequences of elements of a finite field we show probabilistic results that can be 
derived by a combinatorial method. 
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1. Introduction 

The linear-complexity profile was introduced by Rueppel [5], [6, Chapter 4] as a 
tool for assessing randomness properties of keystream sequences in the context of 
stream ciphers. Rueppel considered only binary keystream sequences, which is the 
case of greatest practical interest, but the linear-complexity profile can be defined 
for sequences of elements of any field (see [3]). To provide a benchmark for the 
assessment of keystream sequences, we have to investigate the linear-complexity 
profile of random sequences in a suitable probabilistic model. We use the probabilis- 
tic model set up by the author [4] which works for sequences of elements of any 
finite field. With this probabilistic model, various results on the linear-complexity 
profile of random sequences were established in [4]. The proofs of these results 
required rather heavy mathematical machinery from probability theory, topology, 
and the theory of dynamical systems. In this paper we study the connection between 
these results and the work of Rueppel [5], [6, Chapter 4] which is based on 
combinatorial arguments. In particular, we show that some interesting probabilistic 
results can also be obtained by the more elementary combinatorial method. In 
Section 2 we deal with infinite sequences, whereas in Section 3 we establish con- 
fidence intervals for finite strings when testing the deviation of the local linear 
complexity from the perfect linear complexity. 
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We view a keystream sequence as a sequence of elements of a finite field. We 
denote by Fq the finite field with q elements, where q is an arbitrary prime power. 
The most important case of binary keystream sequences corresponds to q = 2. The 
following definitions are basic. A sequence sl, s2 . . . .  of elements of F~ is called a 
kth-order (linear feedback) shift-register sequence if there exist constant coefficients 
ak-1 . . . . .  ao ~ Fq such that 

Si+k = ak-x Si+k-X + "'" + aoSi for i = 1, 2, . . . .  

The zero sequence 0, 0 . . . .  is viewed as a shift-register sequence of order 0. Now let 
S be an arbitrary sequence sx, Sz . . . .  of elements of Fq and let n be a positive integer. 
Then the (local) linear complexity Ln(S) is defined as the least k such that sx, Sz . . . . .  
s, form the first n terms of a kth-order shift-register sequence. The sequence LI(S ), 
Lz(S), ... of integers is called the linear-complexity profile of S. Thus the linear- 
complexity profile measures the extent to which the initial segments of a key- 
stream sequence can be simulated by shift-register sequences. We clearly have 
0 < L,(S) < n and L,(S) < L,+I(S) for all n and S. 

A suitable probabilistic model was obtained in 1-4] by identifying sequences of 
elements of Fq with their generating functions, then furnishing the set of all gen- 
erating functions with the structure of a compact abelian group and using the unique 
Haar measure on this compact abelian group as the probability measure. If we 
transfer this measure from the set of all generating functions to the set F~ of all 
sequences of elements of Fq, then we get a probability measure h on F~ ~ which can 
be described as follows. For  fixed bl, . . . ,  bme F~ define the cylinder set 

C(bl . . . . .  bin) = { S  = (S1, S 2 . . . .  ) ~ F~: s, = b, for i = 1, 2 , . . . ,  m}. 

Then we have 
h(C(bl, . . . ,  bin)) = q -"  (1) 

for all positive integers m and all b 1 . . . . .  bme Fq. This follows from a comparison 
with formula (4) in [4]. The probability measure h is now obtained by the usual 
process of extension to the a-algebra generated by all cylinder sets and subsequent 
completion (see Section 4 of [2]). Equivalently, h may be constructed by first 
considering the uniform probability measure/~ on Fq which assigns the measure 1/q 
to each element of Fq and then letting h be the complete product measure on F~ 
induced by/~. 

For  a property P of sequences S e F~ we write Prob(P) for the h-measure of the 
set of all S e F~ which have the property P. Of particular interest are those 
properties P for which Prob(P) = 1 since these can be viewed as typical properties 
of a random sequence of elements of Fq. We say that a property P holds with 
probability 1 if Prob(P) = 1. 

2. Probabilistic Laws for Linear Complexity 

The basis of Rueppel's method is an explicit formula for the number of n-bit strings 
with a prescribed value of the linear complexity L,. Such a formula for general 
Fq was established by Gustavson [1] and it is stated below; see also [5] and 
Chapter 4 of [6] for a proof in the case q = 2. 
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Lemma 1. Let N,(L) be the number of  strings of  elements of  Fq of  length n and linear 
complexity L,  = L. Then 

{ ~ - - l ) q  min(2n-2L,2L-1) 
N.(L) = if  n > L > O ,  

if n > L = 0 .  

By using the probability measure h on F~ constructed in Section 1, and in 
particular formula (1), we obtain, for fixed n and L, the identity 

Prob(L,(S) = L) = q-"N,(L). (2) 

The calculations by Rueppel [5], [6, Chapter 4] of the expected value and the 
variance of L, may be interpreted in our model as the calculations of the integrals 

E(L,) = f L,(S) dh and Var(L~)= f (L.(S) - E(Ln)) 2 dh 

with respect to the measure h. This was carried out by Rueppel in the case q = 2, 
and these calculations were recently extended to general Fq by Smeets [7]. We recall 
that these results show that the expected value of L, is close to n/2 and its variance 
is asymptotically a constant. 

We now prove further probabilistic results for the linear complexity which can 
be derived from (2) and Lemma 1. 

Theorem 1. Let f be a nonnegative function on the positive 
~.~1 q-:t') < oo. Then with probability 1 we have 

L.(S) - n <_ �89 for all sufficiently large n. 
L 

inteoers with 

Proof. For a fixed positive integer n let 

D,, = {S ~ F~: L,,(S) > �89 + f(n))}. 

If k(n) is the least integer > (n + f(n))/2, then, for S ~ D,, we have L,(S) > k(n) > 
(n + 1)/2, and so 2n - 2L,(S) < 2L,(S) - 1. Therefore from (2) and Lemma 1 we 
get, under the assumption that k(n) < n, 

h(Dn)=q -n ~, N~(L)=q -n ~ ( q - 1 ) q  2"-2L 
L=k(n) L=k(n) 

n-k(n) 
= ( q - - 1 ) q "  ~ q - 2 L = ( q _  1)qn-2k(n, ~ q-2L 

L=k(n) L=O 

< (q_ 1)qn-Ek(n) ~ q-2L_ 1 q2+n-2k(n). 
L=o q + l  

Since k(n) > (n + f(n))/2, it follows that 

1 q2- f(n) hfD,,) < ~ . 

If k(n) > n, then h(D,,) = 0, and so the bound above holds in all cases. From the 
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hypothesis ~.~176 1 q-Y(") < oo we then obtain ~,~=1 h(D.) < oo. The Borel-Cantelli 
lemma [2, p. 228] now shows that the set of all S for which S e D. for infinitely many 
n has h-measure 0. In other words, with probability 1 we have S e D. for at most 
finitely many n. From the definition of D. it follows then that with probability 1 we 
have 

L,(S) < �89 + f(n)) for all sufficiently large n. (3) 

By a similar method we get an analogous lower bound. For  a fixed n let 

E. = {S e F~: L.(S) < �89 - f(n))}. 

If re(n) is the largest integer < (n - f(n))/2, then, for S e E., we have L.(S) < re(n) < 
n/2, and so 2n - 2L.(S) > 2L.(S) - 1. Therefore from (2) and Lemma 1 we get, 
under the assumption that m(n) > 1, 

m(n) re(n) 
h(E.) = q-" ~ N.(L) = q-" + q-" ~ (q - 1)q 2L-1 

L=O L=I  

m(n)--I 
= q- .  + (q _ 1)ql- .  ~ q2L 

L=O 

1 1 = q - "  -F - q l -n(q2mt . )  __ 1) < q-n  + ql-n+2m(n). 
q + l  q + l  

Since m(n) < (n - f(n))/2, we obtain 

1 
h(E,) < q-" + ql-y(,). 

q + l  

We have h(E.) = q-" if re(n) = 0 and h(E.) = 0 if re(n) < 0, and so the bound above 
holds in all cases. It follows that ~ = 1  h(E . )<  ~ ,  and by applying the Borel-  
Cantelli lemma as before we deduce that with probability 1 we have 

L.(S) > �89 - f(n)) for all sufficiently large n. 

Together with (3) this shows the desired result. []  

Theorem 1 yields the result of Theorem 8 of [4] by a less involved method, and 
in fact the hypothesis in Theorem 1 is weaker since in Theorem 8 of [4] it was 
necessary for technical reasons to make the additional assumption that f is non- 
decreasing. On the other hand, the elementary method in the proof of Theorem 1 
cannot be used to prove deeper results such as Theorem 9 of [4]. The reason is that 
the events D1, D2 . . . .  in the proof of Theorem 1 are not independent (also E 1, E2, 
... are not independent), and so the required Borel zero-one law [2, p. 228] cannot 
be applied. Therefore, it is also impossible to derive the law of the logarithm 
for linear complexity [4, Theorem 10] by the elementary method above. However, 
the following weaker form of this law can be established as a consequence of 
Theorem 1. 

Corollary I. With probability 1 we have 

_ _  1 lim IL.(S) - (n/2)l < _ _  
.-.oo log n - 2 log q" 
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Proof. For a positive integer m we apply Theorem 1 with the function f(n) = 
(1 + m-1)(log n)/(log q). Then with probability 1 

IL~(S) - (n/2)l 1 q- m -1 
< - -  for all sufficiently large n. 

log n 2 log q 

This property holds simultaneously for all m with probability 1 since the countable 
intersection of sets of h-measure 1 has again h-measure 1. The desired conclusion 
follows. [] 

Corollary 2. With probability 1 we have 

lim L~(S) 
w--~oo n 

1 
- -  2 "  

The result of Corollary 2, derived here by elementary means, was shown in 
Theorem 7 of I-4] by using methods from the theory of dynamical systems. Another 
asymptotic result is obtained on the basis of the following lemma. For real t we 
use the following standard notation: I.tJ is the greatest integer < t and lt] is the least 
integer > t. 

Lemma 2. For any integers k, m, and n with I <_ m < n/2 < k <_ n we have 

1 
Prob(m < L,(S) < k) = 1 - i (q2m-~-I + q,-2k). 

q +  

Proof. 
the value O, we get 

k 
Prob(m _< Ln(S ) <_ k) = q-~ ~ Nn(L) 

L=ra 

k 
= q l  t~l N,,(L) + q-" ~_, N,,(L) 

L = m  L=tn/2J+l 

k 
= (q _ 1)q - '-1 t~l q2L "k (q -- 1)q ~ ~ q-2L 

L = m  L=Ln/2J+l  

[n/2J-m 
= ( q _  1)q2~-~-1 ~ q2L + (q _ 1)qn-2tn/2J-2 

L=O 

1 
_ _  q 2 m - n - l ( q 2 1 . n / 2 J - 2 m + 2  __ I) 

q + l  

1 + q~-2k(q2k-2tn/ZJ_ 1) 
q + l  

1 
= 1 -- 1 (q2~-~-1 + q~-2k). 

q +  

Using (2) and Lemma 1 and the standard convention that empty sums have 

k - Lnl2J- 1 

L=O 

[] 

Theorem 2. I f  f and g are nonnegative functions on the positive integers with 
lim~_.~ f(n) = limn~ ~ g(n) = ~ ,  then 

lim Prob n) <_ L~(S) - ~ <_ o(n = 1. 
n-~oo 
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Proof. We take n > 2 so large that f (n) > �89 and g(n) > �89 Put 

m ( n ) = m a x ( 1 , [ 2 - f ( n ) ] ) ,  k ( n ) = m i n ( n , [ 2 + o ( n ) ] ) .  

Then 1 < m(n) <_ n/2 <_ k(n) < n, and so Lemma 2 yields 

Prob - f ( n )  < L.(S) - ~ < g(n) = Prob + g(n) 

Now 

and so 

> Prob(m(n) < L,,(S) < k(n)) 

= 1 - -  
1 q + 1 (q2m(n)-n-1 "t- qn-2k(n)). 

lim (2re(n) -- n) = --2 lim min -- 1,~ -- --f(n)  = --go, 
n - ~  n--*oo 

l i m ( n - 2 k ( n ) )  - 2 1 i m m i n ( 2  [ 2  ' J  2)  = , + g(n - = - ~ ,  
n---~O0 tl---~O0 

1 1 (q2m(n)-n-1 ) l i m  1 --  + qn-2k(n)) = 1. 
.-~o q + 

[] 

The result of Theorem 2 is best possible in the sense that if one of the conditions 
lim.-.oo f (n) = ~ and lim.~oo g(n) = ~ is not satisfied, then the conclusion of the 
theorem cannot hold. 

Theorem 3. I f  f and g are nonnegative functions on the positive integers such that 
either lim.-.oo f (n) < co or lirn._.~ o g(n) < go, then 

( n ) 
lirn Prob - f ( n )  <_ L,(S) - ~ < 9(n) < 1. 
n-..* oo  

Proof. We consider only the case lim,_.~ g(n) < ~z, the other case is treated simi- 
larly. This assumption implies that there exists an M > 1 such that g(n) < M for 
infinitely many n. In particular, there exist infinitely many n > 2M with g(n) <_ M. 
For such n we put k(n) = ['(n/2) + M] and we note that k(n) < n. We then get 

( . ) Prob - f ( n )  <_ L.(S) - ~ <_ g(n) <_ Prob(0 _< L.(S) <_ k(n)) 

= Prob(L.(S) = 0) + Prob(1 _< L.(S) <_ k(n)) 

1 = q l  + 1 - (ql- .  + q.-2kt~)) 
q + l  

by Lemma 2. Now k(n) < (n/2) + M + 1, thus n - 2k(n) > - 2 M  - 2, and so 

( n ) q_. 1 l(ql n q_2M_2) Prob - f ( n )  <_ L,(S) - ~ < g(n) < + 1 -  - + q +  
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for infinitely many n. This implies 

lim Prob - f ( n )  < L~(S) - ~ < o ( n )  <_ 1 - - -  
.--,---~ - q + l  

q-2M-2 < 1. [] 

3. Confidence Intervals for Finite Strings 

In practical statistical testing based on linear complexity we cannot work with 
infinite sequences, but we have to deal with strings of elements of Fq of finite length 
n. One important aspect of this is to obtain confidence intervals for the deviation 
of L.(S) from the perfect linear complexity L(n + 1)/2J. For this reason we consider 
the following problem: for a given positive integer n and a given e with 0 < e < 1 
determine the least integer d = d~(e) such that 

Note that because of (2), the probability on the left-hand side is also equal to q-" 
times the number of strings of n elements of Fq for which the linear complexity 
deviates from [(n + 1)/2] by at most d. 

Lemma 3. For any positive integer n and any integer d with 0 <_ d <_ (n - 1)/2 we 
have / - 

Proof. The result is easily checked for d = 0 by (2) and Lemma 1. For d _> 1 we 
apply Lemma 2 and get 

P rob(  L . (S ) -  ~ J  < d ) = P r o b ( [ ~ - J - d < L . ( S ) < [ ~ - ~ - J + d )  

1 = 1 - 1 q-2d-l(q2ttn+l)/2l-n -t- qn+l-2t{n+l)/21) 
q +  

= 1 - q-2d-1 .  [] 

Theorem 4. I f  dn(e) is defined as above, then, for any positive integer n, we have 

[--�89 + logq e)] for ql-2ttn+l~/21 < e < 1, 

where logq denotes the logarithm to the base q. 

Proof. Firstlet0 < e < ql-2tt"§ for0 _< d _< [(n - I)/2/, we have, by 
Lemma 3, 

P r o b ( L . ( S ) - ~ J  < d ) = l - q  -2d-~ 

<_ 1 - ql-Zt(n+a)/2l < 1 -- e, 
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whereas, for d = L(n + 1)/2/, we trivially have 

j 
Therefore  in this case dn(e) = L(n + 1)/2/. N o w  let qt-2t(n+l)/2J < • < 1. Then,  for d = 
L(n - 1)/2/, we get, by  L e m m a  3, 

Prob L ~(S )  - -  <_ d = l - q l -2 t tn+l j /2J  >_ l - e, 

and so we have 0 _< d , ( e )  <_ [(n - 1)/21. Us ing  again Lemma 3, it follows that d~(~) 
is the least integer d such tha t  

1 - - q - 2 d - l _ _ _ l - - e .  

Since this inequal i ty  is equivalent  to d > - ( 1  + logq e)/2, the desired fo rmula  

follows. [ ]  
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