Skip to main content
Log in

Color categorization and color constancy in a neural network model of V4

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

We develop a neural network model that instantiates color constancy and color categorization in a single unified framework. Previous models achieve similar effects but ignore important biological constraints. Color constancy in this model is achieved by a new application of the double opponent cells found in the “blobs” of the visual cortex. Color categorization emerges naturally, as a consequence of processing chromatic stimuli as vectors in a four-dimensional color space. A computer simulation of this model is subjected to the classic psychophysical tests that first uncovered these phenomena, and its response matches psychophysical results very closely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berlin B, Kay P (1969) Basic color terms: their universality and evolution. University of California Press, Berkely

    Google Scholar 

  • Bornstein MH (1973) Color vision and color naming: a psychophysiological hypothesis of cultural difference. Psychol Bull 80:257–285

    PubMed  Google Scholar 

  • Bornstein MH, Kessen W, Weiskopf S (1976) Color vision and categorization in young human infants. J Exp Psychol 2:115–129

    Google Scholar 

  • Boynton RM, Gordon J (1965) Bezold-Brücke hue shift measured by color-naming technique. J Opt Soc Am 55:78–86

    Google Scholar 

  • Brainard DH, Wandell BA (1986) Analysis of the retinex theory of color vision. J Opt Soc Am 3:1651–1661

    Google Scholar 

  • Dartnall HJA et al. (1983) Human visual pigments: microspectrophotometric results from the eyes of seven persons. Proc R Soc Lond B 220:115–130

    PubMed  Google Scholar 

  • Daw N (1984) The psychology and physiology of colour vision. TINS 7:330–335

    Google Scholar 

  • Derrington AM, Krauskopf A, Lennie P (1984) Chromatic mechanisms in lateral geniculate nucleus of macaque. J Physiol (London) 357:241–265

    Google Scholar 

  • De Yoe EA, Van Essen DC (May 1988) Concurrent processing streams in monkey visual cortex. TINS 11:219–226

    PubMed  Google Scholar 

  • Dowling JE (1987) The retina. Belknap of Harvard, Cambridge, Mass

    Google Scholar 

  • D'Zmura M, Lennie P (1986) Mechanisms of color constancy. J Opt Soc Am 3:1662–1671

    Google Scholar 

  • Gouras P (1985) Colour coding in the primate retinogeniculate system. In: Ottoson D, Zedi S (eds) Central and peripheral mechanisms of colour vision. Macmillan, London, pp 183–197

    Google Scholar 

  • Gouras P, Evers HU (1989) Neural systems detecting spectral contrast independently of effective energy contrast: where and how does color vision begin? In: Kukikowsky JJ, Dickinson CM, Murray IJ (eds) Seeing contour and colour. Pergamon Press, Oxford

    Google Scholar 

  • Gouras P, Zrenner E (1981) Color coding in primate retina. Vision Res 21:1591–1598

    Article  PubMed  Google Scholar 

  • Guth SL, Massof RW, Benzschawel T (1980) Vector model for normal and dichromatic color vision. J Opt Soc Am 70:197–212

    PubMed  Google Scholar 

  • Hubel DH, Livingstone MS (1987) Segregation of form, color, and stereopsis in primate area 18. J Neurosci 7:3378–3415

    PubMed  Google Scholar 

  • Hubel DH, Livingstone MS (1989) Segregation of form, color, movement, and depth processing: anatomy and physiology. In: Kulikowsky JJ, Dickinson CM, Murray IJ (eds) Seeing contour and color. Pergamon Press, Oxford

    Google Scholar 

  • Hurlbert A (1986) Formal connections between lightness algorithms. J Opt Soc Am 3:1684–1693

    Google Scholar 

  • Kandel ER, Schwartz JH (1985) Principles of neural science. Elesevier, New York, pp 366–395

    Google Scholar 

  • Kulikowsky JJ, Dickinson CM, Murray IJ (eds) (1989) Seeing contour and colour. Pergamon Press, Oxford

    Google Scholar 

  • Land EH (1977) The retinex theory of color vision. Sci Am 237:108–129

    PubMed  Google Scholar 

  • Land EH (1983) Colour-generating interactions across the corpus callosum. Nature 303:616–618

    Article  PubMed  Google Scholar 

  • Land EH (1986) An alternative technique for the computation of the designator in the retinex theory of color vision. Proc Natl Acad Sci 83:3078–3080

    PubMed  Google Scholar 

  • Lee H-C (1986) Method of computing the scene-illuminant chromaticity from specular highlights. J Opt Soc Am 3:1694–1699

    Google Scholar 

  • Lennie P, Krauskopf J, Sclar G (1990) Chromatic mechanism in striate cortex of Macaque. J Neurosci 10:649–669

    PubMed  Google Scholar 

  • Livingstone MS, Hubel DH (1984) Anatomy and physiology of a color system in the primate visual cortex. J Neurosci 4:309–356

    PubMed  Google Scholar 

  • Lueck CJ et al. (1989) The colour centre in the cerebral cortex of man. Nature 340:386–389

    Article  PubMed  Google Scholar 

  • Lumsden CJ (1985) Color categorization: a possible concordance between genes and culture. Proc Natl Acad Sci USA 82:5805–5808

    PubMed  Google Scholar 

  • Maloney LT, Wandell BA (1986) Color constancy: a method for recovering surface spectral reflectance. J Opt Soc Am 3:29–33

    Google Scholar 

  • McCann JJ (1976) Quantitative studies in retinex theory. Vision Res 16:445–458

    Article  PubMed  Google Scholar 

  • Merigan WH (1989) Assessing the roles of parallel pathways in primates. In: Kulikowsky JJ, Dickinson CM, Murray IJ (eds) Seeing contour and colour. Pergamon Press, Oxford

    Google Scholar 

  • Michael CR (1989) The origin of double opponency in the monkey striate cortex. In: Kulikowsky JJ, Dickinson CM, Murray IJ (eds) Seeing contour and colour. Pergamon Press, Oxford

    Google Scholar 

  • Mullen KT, Kulikowski JJ and Carden D (1989) The identification of spectral color sensations. In: Kulikowsky JJ, Dickonson CM, Murray IJ (eds) Seeing contour and colour. Perganom Press, Oxford

    Google Scholar 

  • Ottoson DC, Zeki S (eds) (1985) Central and peripheral mechanisms of colour vision. Macmillan, London

    Google Scholar 

  • Press WH (1986) Numerical recipes. Cambridge University Press, Cambridge, pp 540–547

    Google Scholar 

  • Raskin LA, Maital S, Bornstein MH (1983) Perceptual categorization of color: a life-span study. Psychol Res 45:135–145

    Article  PubMed  Google Scholar 

  • Rubner J, Schulten K (1989) A regularized approach to color constancy. Biol Cybern 61:29–36

    Article  PubMed  Google Scholar 

  • Schiller PH, Logothetis NK, Charles ER (1990) Functions of the colour-opponent and broad-band channels of the visual system. Nature 343:68–70

    Article  PubMed  Google Scholar 

  • Sheedy JE (1987) Effect of filters upon object color naming. J Optom Physiol Opt 64:504–512

    Google Scholar 

  • Tihkonov AN, Arsenin VY (1977) Solutions of ill-posed problems. Winston, Washington

    Google Scholar 

  • Wyszecki G, Stiles WS (1982) Color science. Wiley, New York

    Google Scholar 

  • Yuille A (1987) A method for computing spectral reflectance. Biol Cybern 56:195–201

    Article  PubMed  Google Scholar 

  • Zeki S (1983a) Colour coding in the cerebral cortex: the reaction of cells in the monkey visual cortex to wavelengths and colours. Neuroscience 9:741–765

    Article  PubMed  Google Scholar 

  • Zeki S (1983b) Colour coding in the cerebral cortex: the responses of wavelength-selective and colour-coded cells in monkey visual cortex to changes in wavelength composition. Neuroscience 9:767–781

    Article  PubMed  Google Scholar 

  • Zeki S, Shipp S (1989) Functional segregation within area V2 of macaque monkey visual cortex. In: Kulikowsky JJ, Dickinson CM, Murray IJ (eds) Seeing contour and colour. Pergamon Press, Oxford

    Google Scholar 

  • Zrenner E (1985) A new concept for the contribution of retinal and colour-opponent ganglion cells to hue discrimination and colour constancy: the zero signal detector. In: Ottoson DC, Zeki S (eds) Central and peripheral mechanisms of colour vision. Macmillan, London, pp 165–181

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dufort, P.A., Lumsden, C.J. Color categorization and color constancy in a neural network model of V4. Biol. Cybern. 65, 293–303 (1991). https://doi.org/10.1007/BF00206226

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00206226

Keywords