Skip to main content
Log in

Membrane potential changes of skeletomotor neurons in response to random stretches of the triceps surae muscles in decerebrate cats

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The properties of membrane potential changes of skeletomotor neurons (S, FR, and FF) innervating triceps surae muscles during pseudorandom stretching of these muscles were studied in decerebrate cats. Peak amplitudes of pseudorandom muscle stretches ranged from 119 μm to 4.15 mm peak-to-peak. Sequences of ten identical stretching periods were applied for averaging. Shapes of membrane potential changes and probability density distribution of amplitudes of the input and output signals and power spectra suggest that the skeletomotor neuron membrane has nonlinear properties. First-and second-order Wiener kernels were determined by applying the cross-correlation (Lee-Schetzen) method. The results suggest that the transfer function between muscle stretches and subthreshold membrane potentials is a Wiener-type cascade. This cascade is consistent with a linear, second-order, underdamped transfer function followed by a simple quadratic nonlinearity [linear (L) system followed by nonlinear (N) system, or LN cascade]. Including the nonlinear component calculated from the second-order Wiener kernel improved the model significantly over its linear counterpart, especially in S-type motoneurons. Qualitatively similar results were obtained with all types of motoneurons studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anastasijevic R, Anojcic M, Todorovic B, Vuco J (1968) The differential reflex excitability of alpha motoneurons of decerebrate cats caused by vibration applied to the tendon of the gastrocnemius medialis muscle. Brain Res. 11:336–346

    Article  PubMed  Google Scholar 

  • Anastasijevic R, Anojcic M, Todorovic B, Vuco J (1969) Effect of fusimotor stimulation on the reflex response of spinal alpha motoneurones to sinusoidal stretching of the muscle. Exp Neurol 25:559–570

    Article  PubMed  Google Scholar 

  • Anastasijevic R, Cvetkovic M, Vuco J (1971) The extensor monosynaptic reflex during repetitive vibration of the muscle. Yugosl Physiol Pharmacol Acta 7:431–438

    Google Scholar 

  • Anastasijevic R, Stanojevic M, Vuco J (1976) Patterns of motoneuronal units discharge during naturally evoked afferent input. In: Homma S (ed) Understanding the stretch reflex. (Progress in brain research, Vol. 44) Elsevier, Amsterdam, pp 267–278

    Google Scholar 

  • Anastasijevic R, Jocic M, Vuco J (1988) Skeletomotor reflex responses to sinusoidal muscle stretching frequency characteristics and mathematical models. Yugosl Physiol Pharmacol Acta 24 (Suppl 6):3–4

    Google Scholar 

  • Anastasijevic R, Jovanovic K, Ljubisavljevic M, Vuco J (1991) Time coupling of skeletomotor discharges in response to pseudorandom transsynaptic and transmembrane stimulation. Biol Cybern 64:321–328

    Article  PubMed  Google Scholar 

  • Anojcic M, Pasic M, Todorovic B, Vuco J (1967) The reflex activity of spinal motoneurons under dynamic conditions of stretching the tendon to triceps surae muscle in cat. Yugosl Physiol Pharamacol Acta 3:109–121

    Google Scholar 

  • Boskov D, Jocic M, Jovanovic K, Anastasijevic R (1992) Membrane potential changes of skeletomotor neurones in response to pseudo-random stretches of the triceps surae muscles in decerebrate cats. Eighth BMSR Workshop on Nonlinear Methods in Physicological System Modeling, Marina del Rey, Calif

  • Bryant HL, Segundo JP (1976) Spike initiation by transmembrane current: a white noise analysis. J Physiol 260:279–314

    PubMed  Google Scholar 

  • Burke RE (1968) Group Ia synaptic input to fast and slow twitch motor units of cat triceps surae. J Physiol 196:605–630

    PubMed  Google Scholar 

  • Fetz EE, Gustafsson B (1983) Relation between changes of postsynaptic potentials and changes in firing probability of cat motoneurone. J Physiol 341:387–410

    PubMed  Google Scholar 

  • Friedman WA, Sypert GN, Munson JB, Fleshman JW (1981) Recurrent inhibition in type-identified motoneurons. J Neurophysiol 46:1349–1359

    PubMed  Google Scholar 

  • Gillies JD, Lance JN, Neilson PD, Tassinari CA (1969) Presynaptic inhibition of the monosynaptic reflex by vibration. J Physiol 205:329–339

    PubMed  Google Scholar 

  • Granit R, Pascoe JE, Steg G (1957) The behaviour of tonic α and γ-motoneurones during stimulation of recurrent collaterals. J Physiol 138:381–400

    PubMed  Google Scholar 

  • Granit R, Kellerth JO, Williams TD (1964a) Intracellular aspects of stimulating motoneurones by muscle stretch. J Physiol 174:435–452

    PubMed  Google Scholar 

  • Granit R, Kellerth JO, Williams TD (1964b) ‘Adjacent’ and ‘remote’ post-synaptic inhibition in motoneurones stimulated by muscle stretch. J Physiol 174:453–472

    PubMed  Google Scholar 

  • Grüsser O-J, Thiele B (1968) Reaktionen primärer und sekundärer Muskelspindelafferenzen auf sinusförmige mechanische Reizung. I. Variation der Sinusfrequenz. Pflugers Arch 300:161–184

    Article  Google Scholar 

  • Gustafsson B, McCrea D (1984) Influence of stretch-evoked synaptic potentials on firing probability of cat spinal motoneurones. J Physiol 347:431–452

    PubMed  Google Scholar 

  • Hasan Z (1983) A model of spindle afferent response to muscle stretch. J Neurophysiol 49:989–1106

    PubMed  Google Scholar 

  • Homma S, Kanda K (1973) Impulse decoding process in the stretch reflex. In: Gydikov AA, Tankov NT, Kosarov DS (eds) Motor control. Plenum, New York, pp 45–64

    Google Scholar 

  • Hultborn H, Katz R (1983) Amount of recurrent inhibition in type identified motoneurones. In: Reflex organization of the spinal cord and its descending control, Satellite Symposium of XXIX International Congress of the IUPS, Canberra, p 15

  • Ito M, Oshima T (1965) Electrical behaviour of the motoneurone membrane during intracellularly applied current steps. J Physiol 180:607–635

    PubMed  Google Scholar 

  • Jansen JKS, Rack PMH (1966) The reflex response to sinusoidal stretching of soleus in the decerebrate cat. J Physiol 183:15–36

    PubMed  Google Scholar 

  • Jocic M, Anastasijevic R, Vaco J (1988a) Membrane potential changes of skeletomotor neurones during sinusoidal muscle stretching. Frequency characteristics. Yugosl Physiol Pharmacol Acta 24:213–222

    Google Scholar 

  • Jocic M, Anastasijevic R, Vuco J (1988b) Skeletomotor reflex responses to pseudorandom muscle stretching. Eleventh Annual Meeting of ENA, Satellite Symposium Afferent Control of Posture and Locomotion, Rheifelden, p 30

  • Jocic M, Jovanovic K, Anastasijevic R, Vuco J (1988c) White noise analysis of skeletomotor neurone transfer properties. Yugosl Physiol Pharmacol Acta 14 (Suppl 6):155–156

    Google Scholar 

  • Jocic M, Anastasijevic R, Vuco J (1989) Membrane potential changes of skeletomotor neurones during sinusoidal muscle stretching. Mathematical modeling. Yugosl Physiol Pharmacol Acta 25:89–94

    Google Scholar 

  • Korenberg MJ, Hunter IW (1990) The identification of nonlinear biological systems: Wiener kernel approach. Ann Biomed Eng 18:629–654

    PubMed  Google Scholar 

  • Kostyukov AI (1982) Transformation of the frequency-modulated afferent activity by cat motoneurons. Neurofiziologiya 14:196–200

    Google Scholar 

  • Kostyukov AI, Kryzhanovsky MV (1982) Impulse activity evoked in the cat spinal neurons by sinusoidal depolarizing currents. Neurofiziologiya 14:35–42

    Google Scholar 

  • Kröller J, Grüsser O-J, Weiss LR (1985) The response of primary muscle spindle endings to random muscle stretch: a quantitative analysis. Exp Brain Res 61:1–10

    Article  PubMed  Google Scholar 

  • Kröller J, Grüsser O-J, Weiss LR (1988) Observations on phase-locking within the response of primary muscle spindle afferents to pseudorandom stretch. Biol Cybern 59:49–54

    Google Scholar 

  • Lippold OCJ, Redfearn JWT, Vuco J (1958) The effect of sinusoidal muscle stretching upon the activity of stretch receptors in voluntary muscle and their reflex responses. J Physiol 144:373–386

    PubMed  Google Scholar 

  • Lüscher HR, Clamann HP (1992) Relation between structure and function in information transfer in spinal monosynaptic reflex. Physiol Rev 72:71–99

    PubMed  Google Scholar 

  • Marmarelis PZ, Marmarelis VZ (1978) Analysis of physiological systems. Plenum, New York

    Google Scholar 

  • Matthews PBC, Stein RB (1969) The sensitivity of muscle spindle afferents to small sinusoidal changes of length. J Physiol 200:723–743

    PubMed  Google Scholar 

  • Pöpel B, Querfurth H (1984) The transducer and encoder of frog muscle spindles are essentially nonlinear. Physiological conclusions from a white-noise analysis. Biol Cybern 51:21–32

    Article  PubMed  Google Scholar 

  • Poppele RE (1981) An analysis of muscle spindle behavior using randomly applied stretches. Neuroscience 6:1157–1166

    Article  PubMed  Google Scholar 

  • Poppele RE, Terzuolo CA (1968) Myotatic reflex. Its input-output relation. Science 159:743–745

    Google Scholar 

  • Press HP, Flannery BP, Teukolsky SA, Vetterling WT (1987) Numerical recipes. The art of scientific computing. Cambridge University Press, New York

    Google Scholar 

  • Rosenthal NP, McKean TA, Roberts WJ, Terzuolo CA (1970) Frequency analysis of stretch reflex and its main subsystems in triceps surae muscles of the cat. J Neurophysiol 33:713–739

    PubMed  Google Scholar 

  • Stuart DG, Willis WD, Reinking RM (1971) Stretch-evoked excitatory postsynaptic potentials in motoneurons. Brain Res 33:115–125

    Article  PubMed  Google Scholar 

  • Tamai Y (1974) Mutual relationships among stretch reflex responses and applied sinusoidal movement in gastrocnemius and soleus of decerebrated cats. Wakayama Med Rept 17:1–18

    Google Scholar 

  • Tamai Y, Herman R, Freedman W (1974) Reflex tension during sinusoidal movement in gastrocnemius and soleus of decerebrated cat. Jpn J Physiol 14:1–18

    Google Scholar 

  • Westbury DR (1971) The response of α-motoneurons of the cat to sinusoidal movements of the muscles they innervate. Brain Res 25:75–86

    Article  PubMed  Google Scholar 

  • Zengel JE, Reid SA, Syppert GW, Munson JB (1985) Membrane electrical properties and prediction of motor unit type of medial gastrocnemius motoneurons in the cat. J Neurophysiol 53:1323–1344

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boskov, D., Jocic, M., Jovanovic, K. et al. Membrane potential changes of skeletomotor neurons in response to random stretches of the triceps surae muscles in decerebrate cats. Biol. Cybern. 71, 333–339 (1994). https://doi.org/10.1007/BF00239620

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00239620

Keywords

Navigation