Skip to main content
Log in

Probability implication in the logics of classical and quantum mechanics

  • Article
  • Published:
Journal of Philosophical Logic Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bibliography

  1. Adams, E. W., 1966, ‘Probability and the Logic of Conditionals’, in Aspects of Inductive Logic, J. Hintikka and P. Suppes (eds.), North-Holland Publ. Co., Amsterdam, pp. 265–316.

    Google Scholar 

  2. Birkhoff, G. and Neumann, J.von, 1936, ‘The Logic of Quantum Mechanics’, Ann. Math. 37, 823–843.

    Google Scholar 

  3. Bodiou, G., 1964, Théorie dialectique des probabilités, Gauthier-Villars, Paris.

    Google Scholar 

  4. Bugajska, K. and Bugajski, S., 1972, ‘Hidden Variables and 2-dimensional Hilbert Space’, Ann. Inst. Henri Poincare 16, 93–102.

    Google Scholar 

  5. van Fraassen, B. C., 1974, ‘The Labyrinth of Quantum Logics’, in R. S. Cohen and M. W. Wartofsky (eds.), Logical and Epistemological Studies in Contemporary Physics, Boston Studies in the Philosophy of Science Vol. XIII, D. Reidel Publ. Co., Dordrecht-Holland, pp. 224–254.

    Google Scholar 

  6. van Fraassen, B. C., 1973, ‘Semantic Analysis of Quantum Logic’, in C. A. Hooker (ed.), Contemporary Research in the Foundations and Philosophy of Quantum Theory, D. Reidel Publ. Co., Dordrecht-Holland, pp. 80–113.

    Google Scholar 

  7. van Fraassen, B. C., 1976, ‘Probabilities of Conditionals’, in W. L. Harper and C. A. Hooker (eds.), Foundations of Probability Theory, Statistical Inference, and Statistical Theories of Science, Vol. I, D. Reidel Publ. Co., Dordrecht-Holland, pp. 261–308.

    Google Scholar 

  8. van Fraassen, B. C., 1976, ‘Report on Conditionals’, Theorema 6, 5–25.

    Google Scholar 

  9. Gleason, A. M., 1957, ‘Measures on the Closed Subspaces of a Hilbert Space’, Journ. Math. Mech. 6, 885–893.

    Google Scholar 

  10. Greechie, R. J., and Gudder, S. P., 1973, ‘Quantum Logics’, in C. A. Hooker (ed.), Contemporary Research in the Foundations and Philosophy of Quantum Theory, D. Reidel Publ. Co., Dordrecht-Holland, pp. 143–173.

    Google Scholar 

  11. Hardegree, G. M., 1974, ‘The Conditional in Quantum Logic’, Synthese 29, 63–80.

    Google Scholar 

  12. Herman, L., Marsden, E. L. and Piziak, R., 1975, ‘Implication Connectives in Orthomodular Lattices’, Notre Dame J. of Formal Logic 16, 305–328.

    Google Scholar 

  13. Jauch, J. M. and Piron, C., 1970, ‘What is “Quantum Logic”?’, in P. G. O. Freund, C. J. Goebel and Y. Nambu (eds.), Quanta, The Univ. of Chicago Press, Chicago and London, pp. 166–181.

    Google Scholar 

  14. Kamber, F., 1965, ‘Zweiwertige Wahrscheinlichkeitsfunktionen auf orthokomplementären Verbänden’, Math. Annalen 158, 158–196.

    Google Scholar 

  15. Lukasiewicz, J., 1970, Selected Works, L. Borkowski (ed.), North-Holland Publ. Co., Amsterdam and PWN-Polish Scientific Publishers, Warszawa, pp. 16–63 and 129–130.

    Google Scholar 

  16. Mackey, G. W., 1963, The Mathematical Foundations of Quantum Mechanics, a Lecture-Note Volume W. A. Benjamin Inc., New York and Amsterdam.

    Google Scholar 

  17. Mittelstaedt, P., 1972, ‘On the Interpretation of the Lattice of Subspaces of the Hilbert Space as a Propositional Calculus’, Z. Naturforsch. 27a, 1358–1362.

    Google Scholar 

  18. von Neumann, J., 1955, Mathematical Foundations of Quantum Mechanics, Princeton Univ. Press, Princeton.

    Google Scholar 

  19. Pool, J. C. T., 1968, ‘Baer-Semigroups and the Logic of Quantum Mechanics’, Commun. Math. Phys. 9, 118–141; ‘Semimodularity and the Logic of Quantum Mechanics’, ibid. 212–228.

    Google Scholar 

  20. Reichenbach, H., 1949, The Theory of Probability, Univ. of California Press, Berkeley.

    Google Scholar 

  21. Stalnaker, R. C., 1970, ‘Probability and Conditionals’, Philosophy of Science 27, 64–80.

    Google Scholar 

  22. Stalnaker, R. C. and Thomason, R. H., 1970, ‘A Semantic Analysis of Conditional Logic’, Theoria 36, 23–42.

    Google Scholar 

  23. Suppes, P., 1973, ‘Probabilistic Inference and the Concept of Total Evidence’, in J. Hintikka and P. Suppes (eds.), Aspects of Inductive Logic, North-Holland Publ. Co., Amsterdam, pp. 49–65.

    Google Scholar 

  24. von Wright, G. H., 1957, ‘A New System of Modal Logic’, in G. H. von Wright Logical Studies, Routledge and Kegan Paul, London, pp. 89–126.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bugajski, S. Probability implication in the logics of classical and quantum mechanics. J Philos Logic 7, 95–106 (1978). https://doi.org/10.1007/BF00245923

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00245923

Keywords