Skip to main content

Application of the dual active set algorithm to quadratic network optimization

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

A new algorithm, the dual active set algorithm, is presented for solving a minimization problem with equality constraints and bounds on the variables. The algorithm identifies the active bound constraints by maximizing an unconstrained dual function in a finite number of iterations. Convergence of the method is established, and it is applied to convex quadratic programming. In its implementable form, the algorithm is combined with the proximal point method. A computational study of large-scale quadratic network problems compares the algorithm to a coordinate ascent method and to conjugate gradient methods for the dual problem. This study shows that combining the new algorithm with the nonlinear conjugate gradient method is particularly effective on difficult network problems from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The design and analysis of computer algorithms, Addison-Wesley: Reading, MA, 1974.

    Google Scholar 

  2. A. Bachem and B. Korte, “Minimum norm problems over transportation polytopes”, Linear Algebra and Its Applications 31 (1980), 103–118.

    Google Scholar 

  3. P. Beck, L. Lasdon, and M. Engquist, “A reduced gradient algorithm for nonlinear network problems”, ACM Trans. on Math. Software 9 (1983), 57–70.

    Google Scholar 

  4. D.P. Bertsekas and D. El Baz, “Distributed asynchronous relaxation methods for convex network flow problems”, SIAM J. on Control and Optimization 25 (1987), 74–85.

    Google Scholar 

  5. D.P. Bertsekas, P.A. Hosein, and P. Tseng, “Relaxation methods for network flow problems with convex arc costs”, SIAM J. on Control and Optimization 25 (1987) 1219–1243.

    Google Scholar 

  6. G.R. Bitran and A.C. Hax, “Disaggregation and resource allocation using convex knapsack problems with bounded variables”, Mgt. Sci. 27 (1981), 431–441.

    Google Scholar 

  7. F.H. Clarke, “Generalized gradients and applications”, Trans. of the American Mathematical Society 205 (1975), 247–262.

    Google Scholar 

  8. M. Collins, L. Copper, R. Helgason, J. Kennington, and L. LeBlanc, “Solving the pipe network analysis problem using optimization techniques”, Mgt. Sci. 24 (1978), 747–760.

    Google Scholar 

  9. L. Cooper and J. Kennington, “Steady state analysis of nonlinear resistive electrical networks using optimization techniques”, Tech. Report IEOR 77012, Southern Methodist University, Dallas, TX, 1977.

    Google Scholar 

  10. R.W. Cottle, S.G. Duvall, and K. Zikan, “A Lagrangean relaxation algorithm for the constrained matrix problem”, Nav. Res. Logistics Q. 33 (1986), 55–76.

    Google Scholar 

  11. L.H. Cox, “Solving statistical confidentiality problems via network optimization,” TIMS/ORSA Joint National Meeting, New Orleans, LA, 1987.

  12. J.L. Debiesse and G. Matignon, “Comparison of different methods for the calculation of traffic matrices”, Annales des Telecommunications 35 (1980), 91–102.

    Google Scholar 

  13. R.S. Dembo and J.G. Klincewicz, “A scaled reduced gradient algorithm for network flow problems with convex separable costs”, Math. Programming Study 15 (1981), 124–147.

    Google Scholar 

  14. R.S. Dembo, “A primal truncated Newton algorithm with application to large-scale nonlinear network optimization”, Math. Programming Study 31 (1987), 43–72.

    Google Scholar 

  15. M.E. El-Hawary and G.S. Christensen, Optimal economic operation of electric power systems, Academic Press: New York, NY, 1979.

    Google Scholar 

  16. A. George and J.W.H. Liu, Computer Solution of Large Sparse Positive Definite Systems, Prentice-Hall: Englewood Cliffs, NJ, 1981.

    Google Scholar 

  17. C.R. Glassey, “A quadratic network optimization model for equilibrium of single commodity trade flows”, Math. Programming 14 (1978), 98–107.

    Google Scholar 

  18. Goldfarb and Idnani, “A numerically stable dual method for solving strictly convex quadratic programs”, Math. Programming 27 (1983), 1–33.

    Google Scholar 

  19. C.D. Ha, “A generalization of the proximal point algorithm”, SIAM J. on Control and Optimization 28 (1990), 503–512.

    Google Scholar 

  20. W.W. Hager, “Inequalities and approximation”, in Constructive Approaches to Mathematical Models, C.V. Coffman and G.J. Fix, eds., Academic Press: New York, NY, 1979 189–202.

    Google Scholar 

  21. W.W. Hager, “Dual techniques for constrained optimization”, J. of Optimization Theory and Applications 55 (1987), 37–71.

    Google Scholar 

  22. W.W. Hager, “A derivative-based bracketing scheme for univariate minimization and the conjugate gradient method”, Computers and Math. with Applications 18 (1989), 779–795.

    Google Scholar 

  23. W.W. Hager, “Updating the inverse of a matrix”, SIAM Review 31 (1989), 221–239.

    Google Scholar 

  24. W.W. Hager, “The dual active set algorithm”, in Advances in Optimization and Parallel Computing, P.M. Pardalos, ed., North Holland: Amsterdam, The Netherlands, 1992, 137–142.

    Google Scholar 

  25. W.W. Hager and G.D. Ianculescu, “Dual approximations in optimal control”, SIAM J. on Control and Optimization 22 (1984), 423–465.

    Google Scholar 

  26. D.W. Hearn, S. Lawphongpanich, and J.A. Ventura, “Restricted simplicial decomposition: Computation and extensions”, Math. Programming Study 31 (1987), 99–118.

    Google Scholar 

  27. R.V. Helgason, J. L. Kennington, and H. Lall, “Polynomially bounded algorithm for a single constrained quadratic program”, Math. Programming 18 (1980), 338–343.

    Google Scholar 

  28. P.V. Kamesam and R.R. Meyer, “Multipoint methods for nonlinear networks”, Math. Programming Study 22 (1984), 185–205.

    Google Scholar 

  29. J.G. Klincewicz, “A Newton method for convex separable network flow problems”, Networks 13 (1983), 427–442.

    Google Scholar 

  30. J.G. Klincewicz, “Implementing an ‘exact’ Newton method for separable convex transportation problems”, Networks 19 (1989).

  31. K. Klingman, A. Napier, J. Stutz, “NETGEN: A program for generating large scale capacitated assignment, transportation, and minimum cost flow network problems”, Mgt. Sci. 20 (1974), 814–821.

    Google Scholar 

  32. L.J. LeBlanc, R.V. Helgason, and D.E. Boyce, “Improved efficiency of the Frank-Wolfe algorithm for convex network programs”, Transp. Sci. 19 (1985), 445–462.

    Google Scholar 

  33. L.J. LeBlanc, “The conjugate gradient technique for certain quadratic network problems”, Nav. Res. Logistics Q. 23 (1976), 597–602.

    Google Scholar 

  34. Y.Y. Lin and J.S. Pang, “Iterative methods for large convex quadratic programs: A survey”, SIAM J. on Control and Optimization 25 (1987), 383–441.

    Google Scholar 

  35. D.G. Luenberger, Introduction to Linear and Nonlinear Programming, Addison-Wesley: Reading MA, 1984.

    Google Scholar 

  36. F.J. Luque, “Asymptotic convergence analysis of the proximal point algorithm”, SIAM J. on Control and Optimization 22 (1984), 277–293.

    Google Scholar 

  37. B. Martinet, “Regularisation d'inèquations variationelles par approximations successives,” Revue Francaise Informatique et Recherche Opérationnelle (1970), 154–159.

  38. B. Martinet, “Determination approachée d'un point fixe d'une application pseudocontractante”, Comptes Rendus des Séances de l'Académie des Sciences, Paris 274 (1972), 163–165.

    Google Scholar 

  39. M. Minoux, “A polynomial algorithm for minimum quadratic cost flow problems”, European J. of Operational Res. 18 (1984), 377–387.

    Google Scholar 

  40. J.M. Mulvey, S.A. Zenios, and D.P. Ahlfeld, “Simplicial decomposition for convex generalized networks”, Research Report No. EES-85–8, Civil Engineering Department, Princeton University, Princeton, NJ, 1985.

    Google Scholar 

  41. A. Ohuchi and I. Kaji, “Lagrangian dual coordinatewise maximization algorithm for network transportation problems with quadratic costs”, Networks 14 (1984), 515–530.

    Google Scholar 

  42. P.M. Pardalos and N. Kovoor, “An algorithm for singly constrained quadratic programs”, Math. Programming 46 (1990), 321–328.

    Google Scholar 

  43. E. Polak and G. Ribière, “Note sur la convergence de methods de directions conjugres”, Revue Francaise Informatique et Recherche Opérationnelle 16 (1969), 35–43.

    Google Scholar 

  44. R.T. Rockafellar, Convex Analysis, Princeton University Press: Princeton, NJ, 1970.

    Google Scholar 

  45. R.T. Rockafellar, “Augmented Lagrangians and applications of the proximal point algorithm in convex programming”, Math. of Operations Res. 2 (1976), 97–116.

    Google Scholar 

  46. R.T. Rockafellar, “Monotone operators and the proximal point algorithm”, SIAM J. on Control and Optimization 14 (1976), 877–898.

    Google Scholar 

  47. J.E. Spingarn, “Submonotone mappings and the proximal point algorithm”, Numerical Functional Analysis and Optimization 4 (1982), 123–150.

    Google Scholar 

  48. G. Strang, Introduction to Applied Mathematics, Wellesley-Cambridge Press: Wellesley, MA, 1986.

    Google Scholar 

  49. P.L. Toint and D. Tuyttens, “On large scale nonlinear network optimization”. Math. Programming 48 (1990), 125–159.

    Google Scholar 

  50. J.A. Ventura and D.W. Hearn, “Computational development of a Lagrangian dual approach for quadratic networks”, Industrial and Systems Engineering Department, Report 87–8, University of Florida, Gainesville, FL, 1987.

    Google Scholar 

  51. S.A. Zenios and J.M. Mulvey, “Relaxation techniques for strictly convex network problems”, Annals of Operations Research 5 (1985/6), 517–538.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hager, W.W., Hearn, D.W. Application of the dual active set algorithm to quadratic network optimization. Comput Optim Applic 1, 349–373 (1993). https://doi.org/10.1007/BF00248762

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00248762

Keywords