Skip to main content
Log in

Relatively precomplete numerations and arithmetic

  • Published:
Journal of Philosophical Logic Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bernardi, C., ‘On the relation provable equivalence and on partitions in effectively inseparable sets’, Studia Logica 40 (1981), 29–37.

    Google Scholar 

  2. Bernardi, C. and Sorbi, A., ‘Classifying positive equivalence relations’, to appear in The Journal of Symbolic Logic.

  3. Boolos, G., ‘Extremely undecidable sentences’, The Journal of Symbolic Logic 47 (1982), 191–196.

    Google Scholar 

  4. Eršov, Ju. L., ‘Theorie der Numerierungen I’, Zeitschrift f. math. Logik und Grundlagen der Math 19 (1973), 289–388.

    Google Scholar 

  5. Eršov, Ju. L., ‘Theorie der Numerierungen II’, Zeitschrift f. math. Logik und Grundlagen der Math 21 (1975), 473–584.

    Google Scholar 

  6. Eršov, Ju. L., ‘Positive equivalences’, (English translation), Algebra and Logic 10 (1973), 378–394.

    Google Scholar 

  7. Kripke, S., ‘Flexible predicates in formal number theory’, Proc. A.M.S. 13 (1962), 647–650.

    Google Scholar 

  8. Kripke, S. and Pour El, M. B., ‘Deduction preserving recursive isomorphism between theories’, Fund. Math 61 (1967), 141–163.

    Google Scholar 

  9. Montagna, F., ‘On the diagonalizable algebra of Peano Arithmetic’, Bollettino Unione Matematica Italiana (5) 16-B (1979), 795–812.

    Google Scholar 

  10. Rogers, H., Theory of Recursive Functions and Effective Computability McGraw Hill, New York, 1967.

    Google Scholar 

  11. Solovay, R., ‘Provability interpretations of modal logic’, Israel Journal of Math 25 (1976), 287–304.

    Google Scholar 

  12. Visser, A., ‘Numerations, λ-calculus and Arithmetic’, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism; edited by J. P.Seldin and J. R.Hindly, Academic Press, London, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montagna, F. Relatively precomplete numerations and arithmetic. J Philos Logic 11, 419–430 (1982). https://doi.org/10.1007/BF00284977

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00284977

Navigation