Skip to main content
Log in

Proving total correctness of nondeterministic programs in infinitary logic

  • Published:
Acta Informatica Aims and scope Submit manuscript

Summary

It is shown how the weakest precondition approach to proving total correctness of nondeterministic programs can be formalized in infinitary logic. The weakest precondition technique is extended to hierarchically structured programs by adding a new primitive statement for operational abstraction, the nondeterministic assignment statement, to the guarded commands of Dijkstra. The infinitary logic L ω1ω is shown to be strong enough to express the weakest preconditions for Dijkstra's guarded commands, but too weak for the extended guarded commands. Two possible solutions are considered: going to the essentially stronger infinitary logic L ω1ω1 and restricting the power of the nondeterministic assignment statement in a way which allows the weakest preconditions to be expressed in L ω1ω.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Back, R.J.R.: Correctness preserving program refinements: Proof theory and applications. Mathematical Center Tracts 131. Amsterdam: Mathematisch Centrum 1980

    Google Scholar 

  2. Back, R.J.R.: Semantics of unbounded nondeterminism. In: Proc. 7th Coll. Automata, Languages and Programming (J.W. de Bakker, J. van Leeuwen, eds.). Lecture Notes in Computer Science, Vol. 85, pp. 51–63. Berlin-Heidelberg-New York: Springer 1980

    Google Scholar 

  3. Banachowski, L., A. Kreczmar, G. Mirkowska, H. Rasiowa, A. Salwicki: An introduction to algorithmic logic; metamathematical investigations in the theory of programs. In: Mathematical foundations of computer science. (A. Mazurkiewicz, Z. Pawlak, eds.), Banach Center Publications, Vol. 2, pp. 7–99. Warsaw: PWN-Polish Scientific Publishers 1977

    Google Scholar 

  4. Barwise, J.: An introduction to first-order logic. In: Handbook of mathematical logic (J. Barwise, ed.), pp. 5–46. Amsterdam: North-Holland 1977

    Google Scholar 

  5. Boom, H.J.: A weaker precondition for loops. Mathematisch Centrum Amsterdam, report IW 104/78, 1978

    Google Scholar 

  6. Constable, R.L.: On the theory of programming logic. In: 9th ACM Symposium on Theory of Computing, Boulder, Colorado 1977, pp. 269–285. New York: ACM 1977

    Google Scholar 

  7. Dickmann, M.A.: Large infinitary languages. Amsterdam: North-Holland 1975

    Google Scholar 

  8. Dijkstra, E.W.: A discipline of programming. Engelwood-Cliffs: Prentice-Hall 1976

    Google Scholar 

  9. Engeler, E.: Remarks on the theory of geometrical constructions. In: The syntax and semantics of infinitary languages (J. Barwise, ed.), Lecture Notes in Mathematics, Vol. 72, pp. 64–76. Berlin-Heidelberg-New York: Springer 1968

    Google Scholar 

  10. Engeler, E.: Algorithmic logic. In: Foundations of computer science (J.W. de Bakker, ed.), Mathematical Center Tracts 63, pp. 57–85. Amsterdam: Mathematisch Centrum 1975

    Google Scholar 

  11. Harel, D.: First-order dynamic logic. Lecture Notes in Computer Science, Vol. 68. Berlin-Heidelberg-New York: Springer 1979

    Google Scholar 

  12. Hehner, E.: Do considered od: a contribution to the programming calculus. Acta Informat. 11, 287–304 (1979)

    Google Scholar 

  13. Hoare, C.A.R.: Procedures and parameters: An axiomatic approach. In: Symposium on semantics of algorithmic languages (E. Engeler, ed.), Lecture Notes in Mathematics, Vol. 188, pp. 102–116. Berlin-Heidelberg-New York: Springer 1971

    Google Scholar 

  14. Karp, C.R.: Languages with expressions of infinite length. Amsterdam: North-Holland 1964

    Google Scholar 

  15. Keisler, H.J.: Model theory for infinitary logic. Amsterdam: North-Holland 1971

    Google Scholar 

  16. Keisler, H.J.: Fundamentals of model theory. In: Handbook of mathematical logic (J. Barwise, ed.), pp. 47–104. Amsterdam: North-Holland 1977

    Google Scholar 

  17. Manna, Z.: Mathematical theory of computing. New York: McGraw-Hill 1974

    Google Scholar 

  18. Pratt, V.R.: Semantic considerations of Floyd-Hoare logic. In: Proc. 17th IEEE Symp. on Foundations of Computer Science, Houston, Texas 1976, pp. 109–121. Long Beach: IEEE 1976

    Google Scholar 

  19. Rasiowa, H.: Algorithmic logic and its extensions, a survey. In: 5th Scandinavian Logic Symposium, Aalborg 1979, pp. 163–174. Aalborg University Press 1979

  20. Salwicki, A.: Formalized algorithmic languages. Bull. Acad. Polon. Sci., Ser. Math. 18, 227–232 (1970)

    Google Scholar 

  21. Scott, D.: Logic with denumerably long formulas and finite strings of quantifiers. In: Symp. on the Theory of Models (J. Addison, L. Henkin, A. Tarski, eds.), pp. 329–341. Amsterdam: North-Holland 1965

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Back, R.J.R. Proving total correctness of nondeterministic programs in infinitary logic. Acta Informatica 15, 233–249 (1981). https://doi.org/10.1007/BF00289263

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00289263

Keywords

Navigation