Summary
Binary search trees are used in medical diagnostic, species identification, computer decision making, coding, sorting, etc. They are built by applying a sequence of binary tests, when it is required to identify some unknown object or condition, belonging to a given set of possibilities. We search to minimize the path length of a binary tree, giving the probabilities of events. We propose an algorithm which builds the binary tree from the root to the terminal vertices. In this paper, we point out the different properties of that algorithm and the conditions on the probability distribution so that the algorithm becomes nearly optimal.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Akdag, H.: Information et longueur avec coûts. Hémi-questionnaires et Cluedo. Thesis, Université Paris VI, Publication n∘ 13, Structures de l'Information, 1980
Akdag, H.: Optimisation d'information avec coûts. In: Actes du Congrès de l'AFCET, Informatique, Logiciel et Matériel, Nancy, pp. 437–444, 1980
Akdag, H.: On the optimization of a binary tree. International Colloquium on Information Theory, Budapest, Publication n∘ 81/3, Structures de l'Information, 1981
Fano, R.M.: Transmission of information. Massachusetts: The M.I.T. Press, 1961
Garey, M.R.: Simple binary identification problems. I.E.E.E. Trans. Computers C-21, 588 (1972)
Garey, M.R., Graham, R.L.: Performance bounds of the splitting algorithm for binary testing. Acta Informat. 3 (1974)
Horibe, Y.: Entropy and balance in binary trees. Colloque International du CNRS “Théorie de l'Information”, Cachan 1977
Lemaitre, M.: Réalisations optimales et heuristiques de questionnaires. Applications: plan d'inspection, traduction des tables de décision. Thesis, Toulouse, 1975
Mehlhorn, K.: Nearly optimal binary search trees. Acta Informat. 5 (1975)
Payne, R.W., Preece, D.A.: Identification Keys and Diagnotic Tables: a Review. J. Roy. Statist. Soc. Ser. A 253–292 (1980)
Picard, C.F.: Graphs and Questionnaires, Amsterdam: North-Holland 1980
Reza, F.M.: Introduction to Information Theory, McGraw-Hill 1951
Shannon, C.E.: A mathematical theory of communication. Bell System Tech. J. 27, 379–423, 623–656 (1948)
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Akdag, H. Performances of an algorithm constructing a nearly optimal binary tree. Acta Informatica 20, 121–132 (1983). https://doi.org/10.1007/BF00289410
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF00289410