Gemeral Correctness:
a Umificationm of
Partial amd Yotal Correctness

Dean Jacobsl

David Gries
TR 84-641

October 1984

Department of Computer Science
Cornell University
Ithaca, New York 14853

1 This work was supported by the National Science Foundation under grant
MCS-81-03605 and by the second author's Guggenheim Fellowship.
Computer Science Department, University of Southern Califormia. This
paper is based on the first author's Ph.D. thesis at Cornell.
Computer Science Department, Cornell University.

General Correctness:
a Unification of Partial and Total Correctness’

Dean Jacobs? and David Gries®

! This work was supported by the National Science Foundation under grant MCS-81-
03605 and by the second author’s Guggenheim Fellowship.

2 Computer Science Department, University of Southern California. This paper is
based on the first author’s Ph.D. thesis at Cornell.

3 Computer Science Department, Cornell University.

.Summary. General correctness, which subsumes partial and total
correctness, is defined for both weakest preconditions and strongest
postconditions. Healthiness properties for general-correctness predicate
transformers are more uniform and complete than those for partial- and
total-correctness systems. In fact, the healthiness properties for partial
and total correctness are simple restrictions of those for general correct-
ness. General correctness allows simple formulations of the connections
between weakest and strongest postconditions and between the notions of
weakest precondition under the ‘‘demonic” and ‘‘angelic” interpretations
of nondeterminism. A problem that plagues sp —sp (P, C) is undefined
if execution of C begun in some state of P may not terminate— disap-
pears with the generalization.

This paper is a study of some simple theory underlying predicate
transformer semantics, and as yet has little bearing on current program-
ming practices. The theory uses a relational model of programs.

0. Introduction

Neither partial nor total correctness is adequate to distinguish among
some obviously different programs. For example, consider the following three
programs:

CO. skip
Cl: do true — skip od

C2: If true — skip
{ true — C1
fl

For each program, the final state —if there is one— is equal to the initial
state. C0 always terminates, CI never terminates and C2 may terminate but
is not guaranteed to. The three programs are obviously different.

Partial correctness deals only with the relation between initial and final
states of a program and cannot be used to express guaranteed termination;

using partial correctness, C0 and C2 are indistinguishable. Partial correct-
ness can be expressed using weakest liberal preconditions wip: for program C
and predicate P, wip(C, P) is a predicate that represents the set of all ini-
tial states such that execution of C, if it terminates, does so with P true. So
wip(CO, P) = wip(C2, P) = P for any predicate P.

Total correctness treats the same all programs that may not terminate;
using total correctness, C1 and C2 are indistinguishable. Total correctness
can be expressed using weakest preconditions wp: for program C and predi-
cate P, wp(C,P) is a predicate that represents the set of all initial states
such that execution of C is guaranteed to terminate with P true. So
wp(C1,P) = wp(C2, P) = false for any P. See [4] for details of wp and
wip .

Functions wp and wip define sets of initial states of execution given
desired sets of final states. One has similar functions sp and slp, which
define sets of final states from sets of initial states. For predicate P and pro-
gram C, the strongest liberal postcondition wip (P, C) represents the smallest
set of final states such that execution of C, if it terminates, does so in one of
them. The strongest postcondition sp(P, C) represents the smallest set of
final states such that execution of C begun in any state satisfying P is
guaranteed to terminate in one of them.

The purpose of this paper is to generalize to functions gwp(C, P) and
gsp (P, C) that do distinguish between programs such as C0, CI and C2.
The theory is in terms of a relational model, which is given in section 1. The
generalization, in section 2, makes use of a fresh state L that denotes the
“state of nontermination”. The extension not only allows the generalization
but leads, quite naturally, to new functions gwpa and gspa. Function gwpa
can be interpreted in terms of the angelic nondeterminism of Floyd [5], as
opposed to the demonic nondeterminism used by Dijkstra in [4]. The rela-
tionships between the functions gwp, gsp, gwpa, gspa are given in Section 3.

When dealing with predicate transformers, one derives conditions, called
healthiness properties, that must be satisfied for the system to be computa-
tionally meaningful. The healthiness properties for the general-correctness
predicate transformers are given in section 4. They are more uniform than
those for partial and total correctness. For example, gsp, unlike sp, is
defined on all arguments. The partial- and total-correctness properties arise
naturally by restricting those for general correctness (sections 5 and 6).
Finally, in section 7 we consider restricted classes of programs, such as deter-
ministic ones, and develop more properties of the general-correctness predi-
cate transformers.

As yet, this work has had little bearing on programming practices. It is
simply an attempt to provide a more uniform framework in which to view
and relate the various notions of correctness. This seems to have been
accomplished, and in a rather simple way. The use of a relational model has
allowed to give very simple and almost mechanistic proofs. In fact, there is
nothing deep or difficult in the paper.

As long as one is interested only in total correctness or in partial correct-
ness, those systems should be used to reason about programs. However, at
times one may need a system in which to reason more carefully about pro-
grams that may not terminate. One needs a general-correctness system. But
this requires a predicate calculus that can express the ideas represented
operationally here. Such a calculus was developed in the first author’s thesis
[12] and will be reported elsewhere. It may be helpful to say a few words
about it here.

The calculus, in addition to allowing reasoning about the state L of non-
termination, must allow reasoning about undefined variables, since variables
and expressions can be undefined in L. We choose a thre-valued logic,
although this may not be the only approach. A small language is defined in
terms of gwp using the calculus, and proofs of a few small programs are
developed. The logic and the gwp-definitions are more complicated to use
than a conventional system such as that of [4], because one has to worry
about undefinedness —something we usually sweep under the rug. More
experience and practice with such a system may help. Our work in this
regard is similar in nature to that of Barringer, Cheng and Jones [3].

1. Predicates and the Relational Model of Programs

In our relational model, a program is represented by a set of pairs (s, ')
for which execution of the program begun in state # can terminate in state
#'. S denotes the set of possible initial and final states of a machine. In
order to deal with nontermination, we add a fresh state L, so that the state
space is the set S, = Su{L}. The use of L will become clear shortly.

Typically, one gives syntactic predicates (e.g. » < ¢ A z =y) to describe
sets of states: a predicate represents the set of states in which it is true.
With a relational model, however, one thinks of a predicate as being the set
of states and dispenses with the syntactic formulation entirely. Thus, a
predicate P is a subset of S,. The fact that a predicate can contain 1 is
important for general correctness. Operations on predicates include U
(union), W (union of sets indexed by i), N (intersection), M (intersection of
sets indexed by i) and -~ (complement with respect to S;). We use two
boolean-valued operators C and 0, defined on subsets of S, as follows:

(1.0) Definition. BCP £ V(s:2€B:scP) = (BnP =)
BoP & 3(s:seB:seP) = (BnP # {}).

Note that 0 is commutative and C is not. Operator C is conventionally read
“is a subset of”’. Operator 0, read ‘‘has something in common with”, is intro-
duced so that certain algebraic properties can be easily recognized, in particu-
lar, the relationship between € and n;

(1.1) Subset Theorem. (a) B0 P = ~(B < -P)
(b) BS P = ~(Bno-P).

Proof. (a) BQP = 3(s: 8€B: s €P)
= 3(s: € B: ~(s € ~P))
= -V(s: 8 € B: 8 € ~P)
= (B < -P)
(b)B< P = ~~(Bc-~P)
= ~(Bn-P) (by (a) with =P for P) 0O

A binary relation R on S, is a subset of S; XS,. We use the following
notations:

sRa' £ (s,8')eR

s R L (s’ |sRs') (final image of & wrt. R)
R’ L {s|sRs') (initial image of &' wrt. R)
R L {(s',2)|eR ')} (inverse of R)

R1oR2 £ {(s, #'')|3(s':2 R1s’ A o' R25"'}

(composition of R! and R2).

As mentioned earlier, a program is represented by a set of pairs (s, 8’),
i.e. by a binary relation on S,. Several relational models have been pro-
posed. Hoare and Lauer [11] represent a program by the set of all pairs of
states (2, 3') for which execution begun in s (has a nondeterministic choice
that) leads to termination in s’ —the possibility of non-termination is not
recorded in the model. This is the simplest model for studying partial
correctness, where nontermination is irrelevant, but it is inadequate for
studying total correctness. Plotkin [14] proposes inserting the pair (s, L) if
execution begun in & may lead to non-termination. This model gives
extraneous information for studying (only) total correctness: a pair (2, 8') is
irrelevant if there is also a pair (s, L). Wand [17] proposes omitting pairs
(s, #') for all 8’ if execution begun in # may lead to non-termination, and
Smyth [16] proposes inserting pairs (2, 8') for all &’ if execution begun in ¢
may lead to non-termination. The latter two approaches make the possibility
of non-termination indistinguishable from the guarantee of non-termination.
Smyth'’s approach is used implicitly by Hehner [9] in studying program specif-
ications. Plotkin’s approach is investigated by Guerreiro (7], de Bakker [2],
de Roever [15] and many others.

We use Plotkin’s model, since it is both necessary and sufficient for study-
ing general correctness. A program C is represented by a binary relation R
on S, as follows. Let the phrase ‘s may reach s’’’ mean that execution of
C begun in s may (1) terminate in &' if 8’ 3£ 1 or (2) not terminate if
s’ = 1. Then we have the

(1.2) Definition. The binary relation R representing program C is
R £ {(s, ¢') | » may reach s'}.

For example, the relations representing the three programs of section 0 are

Co: {(s, 8) |2€S,}
Ct: {(s, L) |2€S,}
Cz: {(s, 8) |eeS }u{(s, L) |oeS,})

Not all binary relations represent programs, since some do not exhibit
features of computation. Following Guerreiro [7], we introduce program rela-
tions as relations that do exhibit (some of) the features:

(1.3) Definition. A program relation R (on S) is a binary relation on S,
that satisfies

(a) V(e: 2€S,: s R £ {})

(b) LR < {1}

(c) V(s: & R infinite: s R 1).

Restriction (a) says that every initial state may reach some final state (which
may be 1) —execution must have some outcome and S, describes all possi-
ble outcomes. Restriction (b) says that execution ‘‘begun” in the state of
non-termination does not terminate. Together, (a) and (b) mean that | may
reach 1 and no other state. Restriction (c) allows unbounded nondetermin-
ism only if there is the potential for non-termination. It is derived from the
fact that in a finite amount of time we can guarantee choice between only a
finite number of alternatives. Back [1] considers unboundedly nondeterminis-
tic constructs that always terminate.

These restrictions are necessary but not sufficient: some program relations
do not represent any program. We use the restrictions in section 4 to derive
the healthiness properties of general correctness, and we will argue that a
binary relation is consistent with the healthiness properties iff it is a program
relation.

Note that these restrictions refer to final images but not to initial images.
We use this ‘‘asymmetry of computation” to explain in section 4 the differ-
ences between the healthiness properties of weakest preconditions and strong-
est postconditions.

3. Predicate Transformers

We develop definitions of the generalized weakest precondition (gwp) and
generalized strongest postcondition (gsp), in much the same way that the
definitions of wp and sp might be developed. We begin with the definition
of a ‘“Hoare triple” and derive gwp and gep from it. The use of the opera-
tors C and 0 leads us to two more predicate transformers, gwps and gspa.

Consider predicates P, Q and relation R. The ‘“Hoare triple”
{P} R {Q} is interpreted to mean ‘‘execution of the program represented by
R begun in any state of P is guaranteed to reach some state of @ "':

(2.0) Definition. Let R be a relation and P and Q be predicates.
{P}R {Q) & V(s:8€P:8R c Q).

Note that {P} R {Q} resembles a total-correctness triple if L€ @ and a
partial-correctness triple if L ¢ Q. Definition (2.0) makes the negative restric-
tion that P contain only initial states whose final image is a subset of Q.
This requirement can also be expressed as the positive restriction that @ con-
tain oll final states whose initial image has something in common with P:

(2.1) Alternative Formulation Theorem.
{P}R {Q} = V(¢'::Rs' aP=>2'€Q)
Proof. {P} R {Q}
=V(s:8eP=3sR C Q)
=V(s:seP=>WV(e':aRs' =>2s'€Q))
=V(s,8':~(se€P)V ~(sRs'")V 8'€Q)
=V(s,8':(sRs' =>38€c-P)V s €Q)
=V(s':V(s::8Rs' =>8€-P)V 8’ Q)
=V(s':Rs' c-PV seQ)
=V(s':: (R s' < -P)=>3s'€Q)
=V(s':Re' aP=>29'€Q) (by (1.1)) O

We want to define predicate gwp (R, Q) as the weakest (i.e. largest) P that
satisfies {P} R {Q}. Using (2.0), we see that P may contain only states
whose final image is a subset of @, and gwp (R, @) should contain all these
states. On the other hand, predicate gsp(P, R) should be the strongest (i.e.
smallest) @ that satisfies {P} R {@}. Using (2.1), we see that @ must con-
tain all states whose initial image has something in common with P, so
gsp (P, R) should contain only these states. So we have

(2.2) Definition. Let R be a relation and P and Q be predicates.

gup(R, Q) = {s |s R c Q}
gsp (P, R) {¢' |R &' aP}.

> >

Weakest preconditions arise not so much from using C as from using final
images. Similarly, strongest postconditions arise not so much from using 0 as
from using initial images. We define different notions of weakest precondi-
tion and strongest postcondition by interchanging these operators.

(2.3) Definition. Let R be a relation and P and Q be predicates.

gupas(R, Q) = {s |s R0 Q)
gspa(P,R) {¢' |Rs' <P}

>

While gwp requires the final image of a state to be a subset of @, gwpa
requires only that it have something in common with Q. gwp refers to
Dijkstra’s ‘“‘demonic” interpretation of nondeterminism [4], in which the
“worst” execution path may be chosen. Under this interpretation, one con-
siders an initial state to be suitable (i.e. to be in gwp (R, @Q)) iff execution is
guaranteed to reach a state in Q. Hence, an implementation of demonic
nondeterminism is free to choose any execution path.

194 4

On the other hand, gwpa refers to Floyd’s ‘‘angelic’’ interpretation of non-
determinism [5], in which the ‘“‘best” execution path is chosen. An initial

state is suitable (i.e. is in gwpa(R, Q)) iff at at least one execution path leads
to a state in Q. An implementation of angelic nondeterminism uses back-
tracking or parallel evaluation.

Harel [8] presents a mathematical characterization of ‘‘execution method™
in terms of trees of program states. Both interpretations of nondeterminism
can be described in his framework; gwp and gwps appear as the weakest
precondition relativized to two different execution methods.

We might expect gspa to describe strongest postconditions under angelic
nondeterminism. However, under angelic nondeterminism there is no unique
strongest (smallest) postcondition for a given precondition, because two “can-
didates” for the strongest postcondition (in the sense that they cannot be
made any stronger) can be completely disjoint.

Function gspas does not have an immediate relationship to a method of
execution. While gsp requires the initial image of a state to have something
in common with P, gspa requires it to be a subset of P. In other words,
gspa(P, R) is the set of all final states s’ such that P contains every initial
state that can reach s'.

3. The Relationships Between gup, gsp, gwpa, and gspa

We show that there is a simple “‘inverse’’ relationship between gwpa and
gsp and between gspa and gwp. We show that there is a simple “‘duality”
relationship between gwpa and gwp and between gspa and gesp. The duality
relationship describes the connection between weakest preconditions under
the two interpretations of nondeterminism. The inverse and duality relation-
ships together describe the connection between weakest preconditions and
strongest postconditions. It is worth noting that the inverse/duality relation-
ships are not as simple under partial or total correctness.

Remarkably, gwpa, the function that computes weakest preconditions
under angelic nondeterminism, and gsp, the function that computes strongest
postconditions under demonic nondeterminism, are almost identical. The
only difference is that one maps sets of final states to sets of initial states and
the other maps sets of initial states to sets of final states. Functions gspa
and gwp have a similar relationship.

(3.0) Inverse Theorem. guwps(R, Q) = gsp(Q, R™Y)
gspa(P,R) = gup(R™, P).
Proof. guwpa(R,Q)={s |s R0Q}={e |[Re0Q}=yg2p(Q, R7)
s1pa(P.R) = {s' |R o' SP} = {s' |s' RACP} = gup(R, P) O

(3.1) Corollary. gup(R, Q) = gspa(Q,R™)
gop(P, R) = gupa(R™,P).

(3.2) Duality Theorem. gwps(R, Q)= -gup(R, Q)
gepa(P,R) = -gop(~P,R).

Proof. Simple manipulation, as in the proof of theorem (3.0). O

(3.3) Corollary. guwp(R, Q) = ~guwpa(R,-Q)
gep(P, R) = ~gspa(-P,R).

The connection between weakest preconditions under the two interpreta-
tions of nondeterminism is given by (3.2) and (3.3). By (3.2), at least one
execution begun in a state of gwp (R, Q) reaches @ iff it is not the case that
all execution paths reach ~Q. By the corollary, all execution paths reach Q@
iff no execution path reaches ~Q. Taken together, (3.0) and (3.2) allow us to
formulate weakest preconditions in terms of stongest postconditions, and vice
versa:

(3.4) Reformulation Theorem. guwp(R, @) = ~gsp(-Q,R™)
gwpa(R, Q) = -gspa(~Q,R™).

(3.5) Corollary. gsp(P, R) = -~guwp(R™, -P)
gspa(P,R) = -~gwpa(R},-P).

The results of this section are summarized in the following diagram.

Inverse
gwp(R,Q) ={2 |*R < Q}¢———— g2pa(P,R)={s' |R ¢' c P}
Dual Dual
Inverse

gwpa(R,Q)={e |¢ R0 Q}«—— gsp(P,R) ={s¢' |Rs' 0P}

4. Healthiness Properties

Dijkstra [4] proposes certain healthiness properties that wp must satisfy if
it is to be computationally meaningful. We begin this section by presenting
corresponding properties of gwp. Included is a new property, called sfrict-
ness, which controls the use of L. We then use theorem (3.4) to derive
corresponding properties of gsp. The use of this theorem allows us to explain
the differences between the properties of weakest preconditions and strongest
postconditions. In particular, gsp satisfies a weaker version of certain pro-
perties because of the asymmetry of computation (which is exhibited by
definition (1.3) of program relation).

Many discussions of axiomatic semantics do not present an operational
model and therefore must postulate the healthiness properties. In our presen-
tation, as in Hoare [10], these properties are proven in terms of our relational
model. All properties apply to arbitrary binary relations on S, unless it is
explicitly stated that they apply only to program relations.

(4.0) gwp-Excluded Miracle.

(a) guwp(R, S,) =S,
(b) gwp(R, {}) = {} Jor program relation R.

Proof. (a) gwp(R, S,) = {2 |¢eRC S} =S5,
(b) gwp(R, {}) ={s |sRc{}}={} (by(10a)) O

It is instructive to compare (4.0) to the equivalent formulations for total
and partial correctness. Excluded Miracle for wp is written wp(C, false) =
false, where predicate false represents the set {}. However, wp(C, true) =
true does not necessarily hold: wp(C, true) represents the set of states that
are guaranteed to lead to termination and depends on C. In a total-
correctness system, {rue represents the set S and not S, .

Excluded Miracle for wip, on the other hand, is written wip(C, true) =
true, where true represents the set S,. However, wip(C, false) = false does
not necessarily hold: wip(C, false) represents the set of states that are
guaranteed to lead to non-termination and depends on C. In a partial-
correctness system, false represents the set { L} and not {}.

Strictness (4.1), a new healthiness property, controls the use of L. It
requires that execution “begun’ in L reach 1, so that if L€ gwp(R, Q) it
had better be the case that 1 € Q. Moreover, since gwp is a weakest precon-
dition, if L ¢ gwp (R, @) it had better be the case that L £ Q.

(4.1) gwp-Strictness. L€ Q = L€ gup(R, Q) for program relation R.
Proof. 1€eQ =1R < Q (by (1.3))

= 1e{s |¢RCQ}

= leguwp(R, Q) O

We sometimes refer to (4.1) in two parts:

(a) Legwp(R, {1})
(b) L§Q = Lfgup(R, Q).
Properties (4.2) and (4.3) describe how gwp distributes across conjunction

(n) and disjunction (U). They refer to an at-most-countably infinite set of
predicates @ indexed by 1.

(4.2) gwp-Conjunctivitis. @ gwp(R, @;) = gwp(R, M Q,).
Proof. mgwp(R, Q)=r{s |2R c Q}
={s |V(i:2¢R < Q)}
={s|sRCAQ)}
=gwp(R, A Q) O

(4.3) gwp-Disjunctivitis. & gup(R, @) < gup(R, @ Q)
Proof. Similar to that of (4.2). O

(4.4) gwp-Monotonlclty. If Q1< Q2 then guwp(R, Q1)< guwp(R, Q2).
Proof. Suppose Q1 ¢ Q2. Then QIn Q2 = @1, so that
gup (R, Q1) = gup(R, Q1 Q2)
= gup(R, QI)n guwp(R, Q2 (by (4.2)
c gwp(R, Q%) O

10

Property (4.4) was proven in terms of (4.2); (4.3) was proven from set theory
but in fact follows from (4.4).

Define gwpgr(Q) 2 qup (R, Q). We say that gwpp is continuous at Q
iff for every sequence of predicates Qo< @, < ... such that B @, = Q@ we
have W gwpr(Q,) = gwpr(W @,). This is pointwise continuity; we say that
gwpg is continuous if it is continuous at all Q. Theorem (4.5) shows that
gwpg is continuous at Q iff all ways of achieving @ (all ¢ such that
t R € Q) use bounded nondeterminism (¢ R is finite). The intuition behind
(one direction of) the proof is as follows. Suppose there is an initial state ¢
that may reach an infinite number of final states, each in Q. Then there is a
sequence of approximations to @ such that no approximation contains all the
final states: a finite number of them are added at each stage. Hence, the
final image of ¢ is contained in @ but in none of the approximations to Q.
Therefore, ¢t € gwpr(WQ;), but ¢t ¢ gwpr(Q,) and gwpg is not continuous at
Q- The following proof assumes that S, is at most countably infinite.

(4.5) gwp-Pointwise Continulty. gwpr is continuous at Q iff V(¢:
t € gupr(Q): t R iz finite).
Proof. Suppose ¢t R is infinite for some ¢ € gwpp(Q); note that t R € Q. Let
8,, 82, 25, ... be an enumeration of ¢ R. Define @, & Q-tR and
Q41 = Qu{siyy) for 0<i. Clearly, @, C Qiyy and -0 @ = @. Now
W gwpr(Q)= W {s | 2R < @} = {2 |3(i:: # R < Q;)} doesn’t contain
t since no i satisfies t R € Q,. But tegupp(W Q) = guwpr(Q), so
gwpr (W Q) # W gwpr(Q,). Hence, gwpyg is not continuous at Q.

Now, suppose ¢ R is finite for all ¢ € gwpp(Q). Choose any sequence of
predicates Q,CQ, < ... such that W @, = Q. Now ¢ € gupp(3 Q,) means
t R finite, so the following holds.

'ngpk(w Ql)

=te{s |[sR SV Q)

=tRcWQ

= {since t R is finite and Q; € Q(i+ 1) for ali0 < 5}
36::tR < Q)

=tefs |I(i::e R c Q)}

=teW{s |2R c Q}

= te U gupr(Q:)

Therefore, guwpr(W Q,) = W gwpr(Q,), so gwp is continucus at @. 0O

By restriction (1.3c), programs can be unboundedly nondeterministic only
if they have the potential for non-termination. Corollary (4.6) says that if all
ways of achieving Q are guaranteed to terminate, so that none uses
unbounded nondeterminism, then gwpg is continuous at Q. Corollary (4.7)
says that if non-termination is not permitted by @, so that all ways of
achieving Q are guaranteed to terminate, then gwpp is continuous at Q.

(4.6) Corollary. Let R be a program relation. If W(t: ¢t € gupp(Q):
-(t RL1)), then gwpp is continuous at Q.

11

(4.7) Corollary. Ij L§ Q, gwpg i continuous at Q for all program relations
R.

We have just given a set of healthiness properties that program relations
satisfy. It is also true that any binary relation that is consistent with the
healthiness properties is a program relation. Hence, definition (1.3) is neces-
sary and sufficient to produce the healthiness properties. Hoare [10] points
out that it is possible to give a healthy definition of a comstruct that is
impossible (or impractical) to implement. Program relations that do not
correspond to any program are associated with such definitions.

We now consider the healthiness properties of gsp. Corollary (3.5),
gsp(P, R) = —~gwp(R™, ~P), can be used to convert properties of gup to
corresponding properties of gsp —when both R and R~ are program rela-
tions. This technique allows us to explain the differences between the proper-
ties of weakest preconditions and strongest postconditions. First, each pro-
pei’ty of gwp that applies to binary relations corresponds to a property of gsp
that is its ‘‘reflection”. This is understandable, given the —-operators in
(3.5). Second, each property of gwp that applies only to program relations
does not correspond to a property of gsp. This is understandable, given that
(3.5) refers to R, which may not be a program relation even if R is. We
interpret this as follows. In order for gsp to satisfy such properties, R has
to satisfy the same restrictions as R, namely, restrictions (1.3). But this is
not the case since these restrictions are asymmetric: they refer to final images
and not initial images. The asymmetry of computation explains why gsp
satisfies fewer properties than gwp.

All properties of gsp are stated without proof; see [12] for details. All pro-
perties apply to arbitrary binary relations on S, unless it is explicitly stated
that they apply only to program relations.

(4.8) gsp-Excluded Miracle. gop({},R) = {}.

(4.9) gsp-Strictness. gsp({L}, R) = {1} for program relation R.
(4.10) gsp-Conjunctivitis. @ gsp(P,;, R)2 gsp(A P;, R).

(4.11) gsp-Disjunctivitis. @ gsp(P,, R) = gep(W P,, R).

(4.12) gsp-Monotonicity. If P12 P2, then gsp(P1,R) 2 gep (P2, R).

Define gspr(P) & gsp (P, R). We say that gepg is continuous at P iff
for every sequence of predicates Po2 P, 2 ... such that @ P, = P we have
M gopr(P,;) = gepr(@ P,). Function gepg is continuous if it is continuous
at all P. Theorem (4.13) shows that gspgp is continuous at P iff all final
states that cannot be reached from a state in P can be reached by at most a
finite number of other states.

(4.13) gsp-Pointwise Continulty. gspg is continuous at P iff V(t:
t f gapr(P): R t is finite).

12

5. Partlal Correctness

We define partial correctness by restricting general correctness so that
nontermination is always permitted: all predicates must contain L. This is
done simply by restricting the domain of the predicate-argument of gwp and
gsp to predicates containing L. Theorem (4.1) guarantees that if L € Q@ then
Legwp(R, Q), so that gwp has the appropriate range. Similarly, theorem
(4.9) guarantees that if L€ P then Legsp(P, R), so that gsp has the
appropriate range.

(5.0) Definition. For program relation R and predicates P, Q containing L,

wip(R, Q) L qup(R, Q)
sdp(P, R) = gsp(P, R).

To see that (5.0) is reasonable, note that for any @ containing L the con-
ventional interpretation of wip applied to the representation of @ -{1}
represents gwp (R, @)-{L1}. See Majster [13] for a relational characteriza-
tion of wlp. Similarly, for any P containing L the conventional interpreta-
tion of s&lp applied to the representation of P -{L} represents
yap(P, R)_{-L)‘

Functions wip and gwp enjoy the same healthiness properties, with two
exceptions: (4.0b) and (4.1b) refer to predicates that do not contain 1, so
they cannot be formulated in the partial-correctness system.

(5.1) wip-Excluded Miracle. wip(R, S,) =S,.

(5.2) wip-Strictness. 1 ¢ wip(R, {L}) for program relation R.
(5.3) wip-Conjunctivitis. i wip(R, Q,) = wip(R, M Q).
(5.4) wip-Disjunctivitis. @ wip(R, @,)<S wip(R, W Q).

(5.5) wlp-Monotonlcity. If Q1< Q2 then wip(R, Q1)< wip(R, Q2).

If Le Q we say that wipp is continuous at Q iff for every sequence of
predicates Q,C @, C ... such that 1 € Q, forall 0 < i and W @,=@Q we have
W wipp(Q,) = wipr(W Q;). We can show wipg is continuous at Q@ Wgwpp is
continuous at @, so

(5.6) wip-Polntwise Continulty. wipgy is continuovs ot Q iff V(t:
t € wipp(Q): t R is finite).

Functions slp and gwp enjoy the same healthiness properties, with one
exception: (4.8) refers to predicates that do not contain 1, so it cannot be for-
mulated in the partial-correctness system. This means there is no formula-
tion of Excluded Miracle for slp .

(5.7) slp-Strictness. slp({L}, R) = {1} for program relation R.

(5.8) slp-Conjunectivitis. @ #lp(P,, R)2slp(d P,, R).

it

13

(5.9) slp-Disjunctivitis. W sip(P,, R) = slp(W P;, R).
(5.10) slp-Monotonicity. If P12 P2 then slp(P1, R)2 slp (P2, R).

If L€ P we say that slpp is continuous at P iff for every sequence of predi-
cates Po2 P, 2 ... such that A P, = P we have A slpg(P,) = slpp(ni P;).
Clearly, slpg is continuous at P iff gspp is continuous at P, so

(5.11) slp-Pointwise Continulty. slpp is continuous ot P iff v(t:
t f slpg(P): R t is finite).

The conventional formulation of (5.7) is #lp (false, C') == false, which is not
a formulation of Excluded Miracle.

6. Total Correctness

‘In analogy to the previous section, we define wp by restricting the second
argument of gwp to predicates that do not contain 1. Theorem (4.1) guaran-
tees that the range of wp consists only of predicates that do not contain 1.
Function sp cannot be defined so simply, for gsp does not enjoy a strictness
property like gwp. It is possible that L ¢ P but L€ gsp(P, R). However,
this happens precisely when sp is undefined, so we have

(6.0) Definition. For program relation R and predicates- P, Q not contain-
ing 1,

wp(R,Q) = gup(R, Q)
gep(P, R) it Lfgsp(P, R)
(P, R) = {unde/ined otherwize.

Function gwp and wp enjoy the same healthiness properties, with two excep-
tions: (4.0a) and (4.1a) refer to predicates that contain 1, so they cannot be
formulated in a total-correctness system.

(6.1) wp-Excluded Miracle. wp(R,{}) = {} for program relation R.
(6.2) wp-Strictness. 1§ wp(R,Q) for program relation R.

(6.3) wp-Conjunctivitis. M wp(R,Q,)= wp(R, A Q,).

(6.4) wp-Disjunctivitls. & wp(R, Q)< wp(R, ¥ Q).

(6.5) wp-Monotoniclity. If Q1< Q2 then wp(R, Q1)< wp(R, Q2).

If L§Q we say that wpp is continuous at Q iff for every sequence of
predicates QoC Q,C ... such that W @, = @, we have W wpp(Q,) =
wpr(W Q,). Clearly, wpg is continuous at Q iff gwpp is continuous at Q.
By Corollary (4.7), we have

(6.6) wp-Pointwise Continulty. wpp is continuous at all Q.

14

Functions sp and gsp enjoy the same formulation of excluded miracle.

(6.7) sp-Excluded Miracle. s ({}, R) = {}.

However, sp does not satisfy any of the other healthiness properties. For
example, consider monotonicity. Suppose that for some R, every state in P
leads only to termination and state s leads to non-termination. Note that
Lfgsp(P, R), so ep(P,R) is defined. But Legep(Pu{s}, R), so
sp(P u{s}, R) is undefined. Since Pu{s}2 P and it is not the case that
sp(Pu{s}, R)2 sp(P, R), monotonicity is violated.

7. Special Classes of Programs

We now investigate properties of gwp and gsp for the restricted classes of
deterministic, terminating and invertible program relations.

(7.b) Definition. Program relation R is deterministic if ¥(s:: [s R | < 1).

By (1.3a), R is deterministic iff ¥(¢:: |# R | == 1). Theorem (7.1) shows that
the two interpretations of nondeterminism are equivalent for deterministic R .

(7.1) Determinism Theorem. Program relation R is deterministic iff
V(Q:: gup(R, Q)=ygups(R, Q)).
Proof. ¥(Q:: gup(R, Q) = gupa(R, Q)

=V(s, Q: 2 €guwp(R, Q) = s € gupa(R, Q))

=V(s,Q:2 RS Q=2R0Q)

=V(e:|tR|<1)

= R is deterministic 0O

(7.2) Corollary. Program relation R is deterministic iff vQ:
gwp(R, Q) = gep(Q, R7)).
Proof. Immediate from (3.0). O

(7.3) Corollary. Program relation R is deterministic iff W(Q::
gwp(R, =Q) = ~gup(R, Q)).
Proof. Immediate from (3.2). O

Corollary (7.3) shows that gwp distributes across - for deterministic R.
Theorem (7.4) shows that gwp distributes across u for deterministic R .

(7.4) gwp-Deterministic Disjunctivitis. Program relation R is deter-
minsstic iff W gwp (R, @) = gwp(R, W @;) for all sequences Qo @), ...
Proof. This can be proved using (4.11) and (7.2). O

The properties of gsp are unaffected by determinism; (7.0), like (1.3), res-
tricts final images but not initial images. Let us now consider some restric-
tions of initial images.

A program relation is terminating if L is the only state that may reach L:

15

(7.5) Definition. Program relation R is terminating if RL C {1}.

By (1.3), program relation R is terminating iff R L == {.L}. The next theorem
shows that gsp satisfies the stronger version of strictness for terminating R .

(7.6) gsp-Terminating Strictness. Program relation R is terminating iff
V(P:: Le P = Legsp(P, R)).
Proof. VY(P: LeP = L€gsp(P, R))

=V(P:1eP=R10P) (by(22)

= (R1={1})

= R is terminating 0O

(7.7) Corollary. R is terminating == V(P: L§ P: sp(P,R) is defined).

The corollary shows that sp can be used freely with terminating programs.
Note that, by (1.3¢c), if R is terminating then it must be boundedly nondeter-
ministic.

We can make stronger restrictions on initial images by considering pro-
grams that can be ‘“‘run backwards’'.

(7.8) Definition. Program relation R is invertible if R™! is a program rela-
tion.

Theorem (7.9) describes the conditions under which a program relation is
invertible.

(7.9) Invertibility Theorem. Program relation R is invertible iff

(a) W(s':2'€S,: R #{})

(b) R1c {1}

(c) V(¢':8' €S : R &' is finite).
Proof. (7.9a) and (7.9b) are (1.3a) and (1.3b) applied to R™'. (1.3c) applied
to R'isV(s': R &' infinite: LR s'). By (1.3b), LR s' iffs' = 1,80 R o'
must be finite for s’ ¢ 1. By (7.9b) R L is finite, so (7.9¢) holds. O

Restriction (a) says that every final state may be reached from some initial
state. Restriction (b) says that R is terminating. Restriction (c) says that
R must be boundedly nondeterministic.

Invertible program relations are symmetric with respect to the direction of
computation. Therefore, gwp and gsp satisfy similar properties for invertible
program relations. (7.6) shows that gsp satisfies the stronger version of
strictness iff (7.9b) heolds. Similarly, we can show that gsp satisfies the other
law of excluded miracle, gsp(S,, R)=S,, iff (7.9a) holds. We remarked
earlier that if R is terminating then it is boundedly nondeterministic. (7.9¢)
says that R! is also boundedly nondeterministic.

Suppose R is invertible, then (s, ¢)¢ ROR™ for all s€S,. This is a
characterization of one kind of invertibility: execution of the program com-
posed with its inverse can make nondeterministic choices that reach the origi-
nal starting state. We might describe this as the inverse under angelic

18

pondeterminism. The conventional notion of invertibility can be character-
ized by further restricting R .

(7.10) Definition. Invertible program reiation R is deterministically inverti-
ble ifV(s':: |R 8’ | <1).

By (7.9a), invertible program relation R is deterministically invertible iff
V(s': |R8'|=1). Hence, if R is deterministically invertible, then
g RoR™' = {s)} for all # € S|. This is a characterization of the conventional
notion of invertibility: execution of the program composed with its inverse
reaches the original initial state. Note that a deterministically invertibie pro-
gram relation may not be deterministic; (7.10) forbids two different initial
states from reaching the same final state, but one initial state may reach
several different final states.)

(7.11) shows that the properties of gsp for deterministically invertible pro-
gram relations are analogous to those of gwp for deterministic program rela-
tions. We state these properties without proof.

(7.11) Deterministic Inversion Theorem.
R is deterministically invertible
=V(P:: gep (P, R) = gspa(P, R))
=V(P: gsp(P, R) = gup(R”, P))
=V(P:: gop(~P,R) = ~gep (P, R))
=(r gsp(P,, R) = gep(A P,, R) for all Py, P,, ..).

8. Summary

Neither partial nor total correctness is adequate to distinguish between
some obviously different programs. We have introduced a notion of general
correctness that subsumes partial and total correctness in an attempt to over-
come this problem. And we have showed that the general-correctness proper-
ties are simpler, more uniform and more complete than the corresponding
properties of partial and total correctness. Further, we have been able to
exhibit more connections between weakest preconditions and strongest
postconditions and between the two notions of weakest precondition under
“demonic’’ and “angelic’’ interpretations of nondeterminism.

The “healthiness” properties developed here are precisely the rules one
would need in trying to deal with general-correctness ideas in proving pro-
grams correct. However, no help has been given in this paper for dealing
with that issue. We have been interested only in developing the ‘“‘healthi-
ness” properties —using a relational model— and not in showing how those
properties can be put to use in developing programs. Some steps in this
direction are in the first author’s thesis [12], where a logic is developed that
allows explicit reference to the undefinedness of variables and expressions.
The reader is referred to [3], which also investigates a logic in which the
undefined can be handled.

17

Acknowledgements. Thanks go to the Programming Research Group at Oxford
University for their support and hospitality while this work was being done and to
Jan Prins for many insightful and lengthy discussions. Thanks also to Fred Schneider
for critical comments on an earlier draft.

References

[1] Back, R.J. Semantics of unbounded nondeterminism. Proc. ICALP 80,
Lecture Notes in Computer Science 85, Springer Verlag, 1980.

| 2] de Bakker, J.W. Recursive programs as predicate transformers. In For-
mal Description of Programming Concepts (E.J. Neuhold, ed.), Amster-
dam, North Holland, 1978, pp. 165-181.

| 3] Barringer, H., JH. Cheng and C.B. Jones. A logic covering undefined-
ness in program proofs. Tech. Rep., University of Manchester, 1984.

| 4] Dijkstra, EW. A Discipline of Programming. Prentice-Hall, Englewood

_ Cliffs, 1976.

| 5] Floyd, R.W. Nondeterministic algorithms. J. ACM 4 (1967), 636-644.

| 6] Gries, D. The Science of Programminy. Springer-Verlag, N.Y., 1981.

[7] Guerreiro, P. Another characterization of weakest preconditions. Lec-
ture Notes in Computer Science 137, Springer-Verlag, N.Y., 1982, pp
164-177.

[8] Harel, D. On the total correctness of nondeterministic programs. IBM
Research Report RC7691, 1979.

[9] Hehner, R. Predicative programming, Part L. CACM 27 (1984), 134-143.

[10] Hoare, C.A.R. Some properties of predicate transformers. J. ACM 23
(1978), 461-480.

[11] — and P.E. Lauer. Consistent and complementary formal theories of
the semantics of programming languages. Acts Informatica 8 (1974),
135-153.

[12] Jacobs, D. General Correctness: a Unification of Partial and Total
Correctness. Ph.D. Thesis, Computer Science Dept., Cornell University,
Fall 1984.

[13] Majster-Cederbaum, M.E. A simple relation between relational and
predicate transformer semantics for nondeterministic programs. Inf.
Proc. Let. 4 (1980), 190-192.

[14] Plotkin, G.D. A powerdomain construction. SIAM J. Computation 5
(1976), 452-487.

[15] deRoever, W.P. Dijkstra’s predicate transformer, nondeterminism,
recursion, and termination. Lecture Notes in Computer Science 45,
Springer-Verlag, N.Y. (1976), pp. 472-481.

[16] Smyth, M. Powerdomains. JCSS 16 (1978).

[17] Wand, M. A characterization of weakest preconditions. JCSS 15 (1977),
209-212.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif

