Skip to main content
Log in

Synthesis and conformational analysis by 1H NMR and restrained molecular dynamics simulations of the cyclic decapeptide [Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly]

  • Research Paper
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

The design of enzyme mimics with therapeutic and industrial applications has interested both experimental and computational chemists for several decades. Recent advances in the computational methodology of restrained molecular dynamics, used in conjunction with data obtained from two-dimensional 1H NMR spectroscopy, make it a promising method to study peptide and protein structure and function. Several issues, however, need to be addressed in order to assess the validity of this method for its explanatory and predictive value. Among the issues addressed in this study are: the accuracy and generizability of the GROMOS peptide molecular mechanics force field; the effect of inclusion of solvent on the simulations; and the effect of different types of restraining algorithms on the computational results. The decapeptide Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly, which corresponds to the sequence of ACTH1–10, has been synthesized, cyclized, and studied by two-dimensional 1H NMR spectroscopy. Restrained molecular dynamics (RMD) and time-averaged restrained molecular dynamics (TARMD) simulations were carried out on four different distance-geometry starting structures in order to determine and contrast the behavior of cyclic ACTH1–10 in vacuum and in solution. For the RMD simulations, the structures did not fit the NOE data well, even at high values of the restraining potential. The TARMD simulation method, however, was able to give structures that fit the NOE data at high values of the restraining potential. In both cases, inclusion of explicit solvent molecules in the simulation had little effect on the quality of the fit, although it was found to dampen the motion of the cyclic peptide. For both simulation techniques, the number and size of the NOE violations increased as the restraining potential approached zero. This is due, presumably, to inadequacies in the force field. Additional TARMD vacuum-phase simulations, run with a larger memory length or with a larger sampling size (16 additional distance-geometry structures), yielded no significantly different results. The computed data were then analyzed to help explain the sparse NOE data and poor chymotryptic activity of the cyclic peptide. Cyclic ACTH1–10, which contains the functional moieties of the catalytic triad of chymotrypsin, was evaluated as a potential mimic of chymotrypsin by measurement of the rate of hydrolysis of esters of L-and d-phenylalanine. The poor rate of hydrolysis is attributed to the flexibility of the decapeptide, the motion of the side chains, which result in the absence of long-range NOEs, the small size of the macrocycle relative to that of the substrate, and the inappropriate orientation of the Gly, His, and Ser residues. The results demonstrate the utility of this method in computer-aided molecular design of cyclic peptides and suggest structural modifications for future work based on a larger and more rigid peptide framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Torda, A.E. and VanGunsteren, W.F., In Lipkowitz, K.B. and Boyd, D.B. (Eds.), Reviews in Computational Chemistry, Vol. III, VCH, New York, NY, 1992, p. 143.

    Google Scholar 

  2. Breslow, R., Czarniecki, M.F., Emert, J. and Hamaguchi, H., J. Am. Chem. Soc., 102 (1980) 762.

    Google Scholar 

  3. Trainor, G.L. and Breslow, R., J. Am. Chem. Soc., 103 (1981) 154.

    Google Scholar 

  4. Breslow, R., Trainor, G. and Ueno, A., J. Am. Chem. Soc., 105 (1983) 2739.

    Google Scholar 

  5. Breslow, R., Czarnick, A.W., Lauer, M., Leppkes, R., Winkler, J. and Zimmerman, S., J. Am. Chem. Soc., 108 (1986) 1969.

    Google Scholar 

  6. Thiem, H.-J., Brandl, M. and Breslow, R., J. Am. Chem. Soc., 110 (1988) 8612.

    Google Scholar 

  7. Breslow, R. and Chung, S., Tetrahedron Lett., 31 (1990) 631.

    Google Scholar 

  8. Breslow, R. and Chung, S., Tetrahedron Lett., 30 (1989) 4353.

    Google Scholar 

  9. Breslow, R., Anslyn, E. and Huang, D.-L., Tetrahedron, 47 (1991) 2365.

    Google Scholar 

  10. Anslyn, E. and Breslow, R., J. Am. Chem. Soc., 111 (1989) 8931.

    Google Scholar 

  11. Weiner, W., Winkler, J., Zimmerman, S.C., Czarnik, A.W. and Breslow, R., J. Am. Chem. Soc., 107 (1985) 4093.

    Google Scholar 

  12. Breslow, R., Ciba Found. Symp., 158 (1991) 115.

    Google Scholar 

  13. Breslow, R., Pure Appl. Chem., 62 (1990) 1859.

    Google Scholar 

  14. D'Souza, V.T., Hanabusa, K., O'Leary, T., Gadwood, R.C. and Bender, M.L., Biochem. Biophys. Res. Commun., 129 (1985) 727.

    Google Scholar 

  15. Cucinotto, V., D'Allessandro, F., Impellizzeri, G., Pappalardo, G., Rizzarelli, E. and Vecchio, G., J. Chem. Soc., Chem. Commun., (1991) 293.

  16. Menger, F.M. and Sherrod, M.J., J. Am. Chem. Soc., 110 (1988) 8606.

    Google Scholar 

  17. Cram, D.J. and Katz, H.E., J. Am. Chem. Soc., 105 (1983) 135.

    Google Scholar 

  18. Cram, D.J. and Lam, P.Y.-S., Tetrahedron, 42 (1986) 1607.

    Google Scholar 

  19. Cram, D.J., Lam, P.Y.-S. and Ho, S.P., J. Am. Chem. Soc., 108 (1986) 839.

    Google Scholar 

  20. Kellog, R.M., Kaptein, B. and Buter, J., Bull. Chem. Soc. Belg., 99 (1990) 703.

    Google Scholar 

  21. Tabushi, I., Kuroda, Y. and Mochizuchi, I., J. Am. Chem. Soc., 102 (1980) 1152.

    Google Scholar 

  22. Mallick, I.M., D'Souza, V.T., Yamaguchi, M., Lee, J., Chalabi, P., Gadwood, R.C. and Bender, M.L., J. Am. Chem. Soc., 106 (1984) 7252.

    Google Scholar 

  23. Gennari, C., Molinari, F., Piarulli, U. and Bartoletti, M., Tetrahedron, 46 (1990) 7289.

    Google Scholar 

  24. Gennari, C., Molinari, F. and Piarulli, U., Tetrahedron Lett., 31 (1990) 2929.

    Google Scholar 

  25. Mertes, M.P. and Mertes, K.M., Acc. Chem. Res., 23 (1990) 413.

    Google Scholar 

  26. Hahn, K.W., Klis, W.A. and Stewart, J.M., Science, 248 (1990) 1544.

    Google Scholar 

  27. Suh, J., Acc. Chem. Res., 25 (1992) 273.

    Google Scholar 

  28. Atassi, M.Z. and Manshouri, T., Proc. Natl. Acad. Sci. USA, 90 (1993) 8282.

    Google Scholar 

  29. Matthews, B.W., Craik, C.S. and Neurath, H., Proc. Natl. Acad. Sci. USA, 91 (1994) 4103.

    Google Scholar 

  30. Wells, J.A., Fairbrother, W.J., Otlewski, J. and Laskowski, J.M., Proc. Natl. Acad. Sci. USA, 91 (1994) 4110.

    Google Scholar 

  31. Corey, D.R. and Phillips, M.A., Proc. Natl. Acad. Sci. USA, 91 (1994) 4106.

    Google Scholar 

  32. Marrone, T.J. and McCammon, J.A., J. Am. Chem. Soc., 116 (1994) 6987.

    Google Scholar 

  33. Venanzi, C.A. and Bunce, J.D., Int. J. Quantum Chem., Quantum Biol. Symp., 12 (1986) 69.

    Google Scholar 

  34. Venanzi, C.A. and Bunce, J.D., Ann. New York Acad. Sci., 471 (1986) 318.

    Google Scholar 

  35. Venanzi, C.A. and Bunce, J.D., Enzyme, 36 (1986) 79.

    Google Scholar 

  36. Venanzi, C.A. and Namboodiri, K., Anal. Chim. Acta. 210 (1988) 151.

    Google Scholar 

  37. Venanzi, C.A., In Liebman, J.F. and Greenberg, A. (Eds.), Environmental Influences and Recognition in Enzyme Chemistry, Vol. 10, VCH, New York, NY, 1988, p. 251.

    Google Scholar 

  38. Venanzi, C.A., Canzius, P.M., Zhang, Z. and Bunce, J.D., J. Comput. Chem., 10 (1989) 1038.

    Google Scholar 

  39. Maye, P.V. and Venanzi, C.A., Struct. Chem., 1 (1990) 517.

    Google Scholar 

  40. Venanzi, C.A. and Maye, P.V., Struct. Chem., 2 (1991) 493.

    Google Scholar 

  41. Maye, P.V. and Venanzi, C.A., J. Comput. Chem., 12 (1991) 994.

    Google Scholar 

  42. Wertz, D.A., Shi, C.-X. and Venanzi, C.A., J. Comput. Chem., 13 (1992) 41.

    Google Scholar 

  43. Wallis, M., Howell, S.L. and Taylor, K.W., The Biochemistry of Polypeptide Hormones, Wiley, New York, NY, 1985.

    Google Scholar 

  44. Torda, A.E., Brunne, R.M., Huber, T., Kessler, H. and VanGunsteren, W.F., J. Biomol. NMR, 3 (1993) 55.

    Google Scholar 

  45. Schwyzer, R., Ann. New York Acad. Sci., 297 (1977) 3.

    Google Scholar 

  46. Seelig, S., Sayers, G., Schwyzer, R. and Schiller, P., Febs Lett., 19 (1971) 232.

    Google Scholar 

  47. Fauchère, J.-L., Helv. Chim. Acta, 68 (1985) 770.

    Google Scholar 

  48. Fauchère, J.-L., Rossier, M., Capponi, A. and Vallotton, M.B., Febs Lett., 183 (1985) 283.

    Google Scholar 

  49. Fauchère, J.L. and Petermann, C., Helv. Chim. Acta, 61 (1978) 1186.

    Google Scholar 

  50. Bristow, A.F., Gleed, C., Fauchère, J.-L., Schwyzer, R. and Schulster, D., Biochem. J., 186 (1980) 599.

    Google Scholar 

  51. Patel, D.J., Macromolecules, 4 (1971) 251.

    Google Scholar 

  52. Toma, F., Fermandjian, S., Loew, M. and Kisfaludy, L., Biopolymers, 20 (1981) 901.

    Google Scholar 

  53. Schwyzer, R. and Kappeler, H., Helv. Chim. Acta, 44 (1961) 1991.

    Google Scholar 

  54. Kaptein, R., Boelens, R., Scheek, R.M. and VanGunsteren, W.F., Biochemistry, 27 (1988) 5389.

    Google Scholar 

  55. Kaptein, R., Zuiderweg, E.R.P., Scheek, R.M., Boelens, R. and VanGunsteren, W.F., J. Mol. Biol., 182 (1985) 179.

    Google Scholar 

  56. Zuiderweg, E.R.P., Scheek, R.M., Boelens, R., VanGunsteren, W.F. and Kaptein, R., Biochemie, 67 (1985) 707.

    Google Scholar 

  57. DeVlieg, J., Boelens, R., Scheek, R.M., Kaptein, R. and VanGunsteren, W.F., Isr. J. Chem., 27 (1986) 181.

    Google Scholar 

  58. DeVlieg, J., Scheek, R.M., VanGunsteren, W.F., Berendsen, H.J.C., Kaptein, R. and Thomason, J., Protein Struct. Funct. Genet., 3 (1988) 209.

    Google Scholar 

  59. Torda, A.E., Mabbutt, B.C., VanGunsteren, W.F. and Norton, R.S., Febs Lett., 239 (1988) 266.

    Google Scholar 

  60. Kaluarachchi, K., Meadows, R.P. and Gorenstein, D.G., Biochemistry, 30 (1991) 8785.

    Google Scholar 

  61. Clore, G.M., Sukumaran, D.K., Nilges, M. and Gronenborn, A.M., Biochemistry, 26 (1987) 1732.

    Google Scholar 

  62. Chiche, L., Gaboriaud, C., Heitz, A., Mornon, J.-P., Castro, B. and Kollman, P.A., Protein Struct. Funct. Genet., 6 (1989) 405.

    Google Scholar 

  63. Lee, S.C., Russel, A.F. and Laidig, W.D., Int. J. Pept. Protein Res., 35 (1990) 367.

    Google Scholar 

  64. Baleja, J.D., Pon, R.T. and Sykes, B.D., Biochemistry, 29 (1990) 4828.

    Google Scholar 

  65. Schmidt, J.M., Ohlenschläger, O., Rüterjans, H., Grozonka, Z., Kojro, E., Pavo, I. and Fahrenholtz, F., Eur. J. Biochem., 201 (1991) 355.

    Google Scholar 

  66. Sanson, M.S.P., Son, H.S., Sankararamakrishnon, R., Kerr, I.D. and Breed, J., Biophys. J., 65 (1995) 1295.

    Google Scholar 

  67. Kessler, H., Bats, J.W., Griesinger, C., Koll, S., Will, M. and Wagner, K., J. Am. Chem. Soc., 110 (1991) 1033.

    Google Scholar 

  68. Lautz, J., Kessler, H., Kaptein, R. and VanGunsteren, W.F., J. Comput.-Aided Mol. Design, 1 (1987) 219.

    Google Scholar 

  69. Lautz, J., Kessler, H., Boelens, R., Kaptein, R. and VanGunsteren, W.F., Int. J. Pept. Protein Res., 30 (1987) 404.

    Google Scholar 

  70. Pepermans, H., Tourwé, D., VanBinst, G., Boelens, R., Scheek, R., VanGunsteren, W.F. and Kaptein, R., Biopolymers, 27 (1988) 323.

    Google Scholar 

  71. Fesik, S.W., Bolis, G., Sham, H.L. and Olejniczak, E.T., Biochemistry, 26 (1987) 1851.

    Google Scholar 

  72. Fry, D.C., Madison, V.S., Greeley, D.N., Felix, A.M., Heimer, E.P., Frohman, L., Campbell, R.M., Mowles, T.F., Toome, V. and Wegrzynski, B.B., Biopolymers, 32 (1992) 649.

    Google Scholar 

  73. Saulitis, J., Mierke, D.F., Byk, G., Gilon, C. and Kessler, H., J. Am. Chem. Soc., 114 (1992) 4818.

    Google Scholar 

  74. Mierke, D.F., Pattaroni, C., Delaet, N., Toy, A., Goodman, M., Tancredi, T., Motta, A., Temussi, P.A., Moroder, L., Bovermann, G. and Wünsch, E., Int. J. Pept. Protein Res., 36 (1990) 418.

    Google Scholar 

  75. Jayaraman, G., Bhaskaran, R., Kumar, T.K.S., Yu, H.-M., Chen, S.-T. and Yu, C., Int. J. Pept. Protein Res., 46 (1995) 88.

    Google Scholar 

  76. Ma, S., McGregor, M.J., Cohen, F.E. and Pallai, P.V., Biopolymers, 34 (1994) 987.

    Google Scholar 

  77. Beusen, D.D., Zabrocki, J., Slomczynska, U., Head, R.D., Kao, J.L.-F. and Marshall, G.R., Biopolymers, 36 (1995) 181.

    Google Scholar 

  78. Van Gunsteren, W.F. and Berendsen, H.J.C., available from Biomos B.V., Groningen, The Netherlands.

  79. Torda, A.E., Scheek, R.M. and VanGunsteren, W.F., Chem. Phys. Lett., 157 (1989) 289.

    Google Scholar 

  80. Torda, A.E., Scheek, R.M. and VanGunsteren, W.F., J. Mol. Biol., 214 (1990) 223.

    Google Scholar 

  81. Scheek, R.M., Torda, A.E., Kemmink, J. and VanGunsteren, W.F., In Hoch, J.C., Poulson, F.M. and Redfield, C. (Eds.) Computational Aspects of the Study of Biological Macromolecules by Nuclear Magnetic Resonance, Plenum, New York, NY, 1991, p. 209.

    Google Scholar 

  82. Nanzer, A.P., Poulsen, F.M., VanGunsteren, W.F. and Torda, A.E., Biochemistry, 33 (1994) 14503.

    Google Scholar 

  83. Kessler, H., Matter, H., Gemmecker, G., Kling, A. and Kottenhahn, M., J. Am. Chem. Soc., 113 (1991) 7550.

    Google Scholar 

  84. Kessler, H., Matter, H., Gemmecker, G., Kottenhahn, M. and Bats, J.W., J. Am. Chem. Soc., 114 (1992) 4805.

    Google Scholar 

  85. Mierke, D.F., Huber, T. and Kessler, H., J. Comput.-Aided Mol. Design, 8 (1994) 29.

    Google Scholar 

  86. Brunne, R.M. and Liebfritz, D., Int. J. Pept. Protein Res., 40 (1992) 401.

    Google Scholar 

  87. Barany, G. and Merrifield, R.B., In Gross, E. and Meienhofer, J. (Eds.), The Peptides, Analysis, Synthesis, Biology, Vol. 2, Academic Press, London, U.K., 1979, p. 1.

    Google Scholar 

  88. Fields, G.B. and Noble, R.L., Int. J. Pept. Protein Res., 35 (1990) 161.

    Google Scholar 

  89. Mergler, M., Tanner, R., Gosteli, J. and Grogg, P., Tetrahedron Lett., 29 (1988) 4005.

    Google Scholar 

  90. Castro, B., Dormoy, J.R., Evin, G. and Selve, C., Tetrahedron Lett., 14 (1975) 1219.

    Google Scholar 

  91. Macura, S. and Ernst, R.R., Mol. Phys, 41 (1980) 95.

    Google Scholar 

  92. Bax, A. and Davis, D.G., J. Magn. Reson., 65 (1985) 355.

    Google Scholar 

  93. Bax, A. and Davis, D.G., J. Magn. Reson., 63 (1985) 207.

    Google Scholar 

  94. Wüthrich, K., NMR of Proteins and Nucleic Acids, Wiley, New York, NY, 1986.

    Google Scholar 

  95. VanNuland, N.A.J., Groetzinger, J., Dijkstra, K., Scheek, R.M. and Robillard, G.T., Eur. J. Biochem., 210 (1992) 881.

    Google Scholar 

  96. Crippen, G.M. and Havel, T.F., Acta Crystallogr., A 34 (1978) 282.

    Google Scholar 

  97. Scheek, R.M., VanGunsteren, W.F. and Kaptein, R., Methods Enzymol., 177 (1989) 204.

    Google Scholar 

  98. Available from Molecular Simulations, Boston, MA.

  99. VanGunsteren, W.F. and Berendsen, H.J.C., Mol. Phys., 34 (1977) 1311.

    Google Scholar 

  100. Berendsen, H.J.C., Postma, J.P.M., VanGunsteren, W.F., Di-Nola, A. and Haak, J.R., J. Chem. Phys., 81 (1984) 3684.

    Google Scholar 

  101. Berendsen, H.J.C., VanGunsteren, W.F., Zwinderman, H.R. and Geurtsen, R.G., Ann. New York Acad. Sci., 482 (1986) 269.

    Google Scholar 

  102. Kern, P., Brunne, R.M. and Folkers, G., J. Comput.-Aided Mol. Design, 8 (1994) 367.

    Google Scholar 

  103. VanGunsteren, W.F., Boelens, R., Kaptein, R., Scheek, R.M. and Zuiderweg, E.R.P., In Hermans, J. (Ed.), Molecular Dynamics and Protein Structure, Polycrystal Book Service, Western Springs, IL, 1985, p. 92.

    Google Scholar 

  104. Developed and distributed by Chemical Design, Ltd., Oxford, U.K.

  105. Beveridge, D.L., McConnell, K.J., Nirmala, R., Young, M.A., Vijayakumar, S. and Ravishanker, G., In Cramer, C.J. and Truhlar, D.G. (Eds.) Structure and Reactivity in Aqueous Solution, ACS Symposium Series Vol. 568, American Chemical Society, Washington, DC, 1995, p. 381.

    Google Scholar 

  106. Pearlman, D.A., J. Biomol. NMR, 4 (1994) 279.

    Google Scholar 

  107. Tsukada, H. and Blow, D.M., J. Mol. Biol., 184 (1985) 703.

    Google Scholar 

  108. Blevins, R.A. and Tulinsky, A., J. Biol. Chem., 260 (1985) 4264.

    Google Scholar 

  109. Pearlman, D.A. and Kollman, P.A., J. Mol. Biol., 220 (1991) 457.

    Google Scholar 

  110. Pearlman, D.A., J. Biomol. NMR, 4 (1994) 1.

    Google Scholar 

  111. Schmitz, U., Kumar, A. and James, T.L., J. Am. Chem. Soc., 114 (1992) 10654.

    Google Scholar 

  112. Gandour, R.D., Bioorg. Chem., 10 (1981) 169.

    Google Scholar 

  113. Rebek, J.J., In Liebman, J.F. and Greenberg, A. (Eds.), Environmental Influences and Recognition in Enzyme Chemistry, Vol. 10, VCH, New York, NY, 1988, p. 219.

    Google Scholar 

  114. Li, Y. and Houk, K.N., J. Am. Chem. Soc., 111 (1989) 4505.

    Google Scholar 

  115. Rebek, J., Struct. Chem., 1 (1990) 129.

    Google Scholar 

  116. Corey, D.R., McGrath, M.E., Vasquez, J.R., Fletterick, R.J. and Craik, C.S., J. Am. Chem. Soc., 114 (1992) 4905.

    Google Scholar 

  117. Corey, D.R. and Craik, C.S., J. Am. Chem. Soc., 114 (1992) 1784.

    Google Scholar 

  118. D'Souza, V.T. and Bender, M.L., Acc. Chem. Res., 20 (1987) 146.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buono, R.A., Kucharczyk, N., Neuenschwander, M. et al. Synthesis and conformational analysis by 1H NMR and restrained molecular dynamics simulations of the cyclic decapeptide [Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly]. Journal of Computer-Aided Molecular Design 10, 213–232 (1996). https://doi.org/10.1007/BF00355044

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00355044

Keywords

Navigation