Skip to main content
Log in

Semilattice-based dualities

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

The paper discusses “regularisation” of dualities. A given duality between (concrete) categories, e.g. a variety of algebras and a category of representation spaces, is lifted to a duality between the respective categories of semilattice representations in the category of algebras and the category of spaces. In particular, this gives duality for the regularisation of an irregular variety that has a duality. If the type of the variety includes constants, then the regularisation depends critically on the location or absence of constants within the defining identities. The role of schizophrenic objects is discussed, and a number of applications are given. Among these applications are different forms of regularisation of Priestley, Stone and Pontryagin dualities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banaschewski, B., 1971, ‘Projective covers in categories of topological spaces and topological algebras’, General Topology and its Relation to Modern Analysis and Algebra, (Proc. Kanpur Topology Conference 1968), Academia, Prague, 63–91.

    Google Scholar 

  2. Berman, J., 1983, ‘Free spectra of 3-element algebras’, Universal Algebra and Lattice Theory, R.S. Freese and O.C. Garcia, eds., Springer, Berlin, 10–53.

    Google Scholar 

  3. Birkhoff, G., 1967, Lattice Theory (3rd.ed.), American Mathematical Society, Providence, R.I.

    Google Scholar 

  4. Bochvar, D. A., 1938, ‘On a three-valued logical calculus and its application to the analysis of contradictions’, (Russian), Mat. Sb. 46, 287–308, English translation in Hist. Philos. Logic 2, 1981, 87–112.

    Google Scholar 

  5. Davey, B. A., 1992, ‘Duality theory on ten dollars a day’, La Trobe University Mathematics Research Paper 131 (92–3).

  6. Davey, B. A. and H. Werner, 1980, ‘Dualities and equivalences for varieties of algebras’, Colloq. Math. Soc. J. Bolyai 33, 101–275.

    Google Scholar 

  7. Gierz, G. and A. Romanowska, 1991, ‘Duality for distributive bisemilattices’, J. Austral. Math. Soc. Series A 51, 247–275.

    Google Scholar 

  8. Guzmán, F., 1992, Three-valued logics in the semantics of programming languages, preprint.

  9. Hewitt, E. and H. S. Zuckerman, 1956, ‘The l 1-algebra of a commutative semigroup’, Trans. Amer. Math. Soc. 83, 70–97.

    Google Scholar 

  10. Hofmann, K. H., M. Mislove and A. Stralka, 1974, The Pontryagin Duality of Compact O-Dimensional Semilattices and its Applications, Springer, Berlin.

    Google Scholar 

  11. Howie, J. M., 1976, An Introduction to Semigroup Theory, Academic Press, London.

    Google Scholar 

  12. Idziak, P. M., 1989, ‘Sheaves in universal algebra and model theory’, Reports on Math. Logic 23, 39–65.

    Google Scholar 

  13. Johnstone, P. T., 1982, Stone Spaces, Cambridge University Press, Cambridge.

    Google Scholar 

  14. Kleene, S. C., 1952, Introduction to Metamathematics, Van Nostrand, Princeton.

    Google Scholar 

  15. Libkin, L., 1993, Towards a theory of edible powerdomains, preprint.

  16. Mac Lane, S., 1971, Categories for the Working Mathematician, Springer, Berlin.

    Google Scholar 

  17. Mac Lane, S. and I. Moerdijk, 1992, Sheaves in Geometry and Logic, Springer, Berlin.

    Google Scholar 

  18. Mel'nik, I. I., 1971, ‘Normal closures of perfect varieties of universal algebras’, Ordered Sets and Lattices, (Russian), Izdat. Sarat. Univ., 56–65.

  19. Płonka, J., 1967, ‘On distributive quasi-lattices’, Fund. Math. 60, 191–200.

    Google Scholar 

  20. Płonka, J., 1967, ‘On a method of construction of abstract algebras’, Fund. Math. 61, 183–189.

    Google Scholar 

  21. Płonka, J., 1969, ‘On equational classes of algebras defined by regular equations’, Fund. Math. 64, 241–247.

    Google Scholar 

  22. Płonka, J., 1984, ‘On the sum of a direct system of universal algebras with nullary polynomials’, Alg. Univ. 19, 197–207.

    Google Scholar 

  23. Płonka, J., 1985, ‘On the sum of a i-semilattice ordered system of algebras’, Studia Scient. Math. Hungar. 20, 301–307.

    Google Scholar 

  24. Płonka, J., 1991, ‘Characteristic algebras in some varieties defined by symmetrically regular identities’, Contributions to General Algebra 7, D. Dorninger, G. Eigenthaler, H. K. Kaiser and W. B. Müller, eds., Hölder-Pichler-Tempsky, Vienna, 265–276.

  25. Płonka, J. and A. Romanowska, 1992, ‘Semilattice sums’, Universal Algebra and Quasigroup Theory, A Romanowska and J.D.H. Smith, eds., Heldermann, Berlin, 123–158.

    Google Scholar 

  26. Priestley, H. A., 1970, ‘Representation of distributive lattices by means of ordered Stone spaces’, Bull. Lond. Math. Soc. 2, 186–190.

    Google Scholar 

  27. Priestley, H. A., 1972, ‘Ordered topological spaces and the representation of distributive lattices’, Proc. Lond. Math. Soc. 24, 507–530.

    Google Scholar 

  28. Puhlmann, H., 1993, ‘The snack powerdomain for database semantics’, Mathematical Foundations of Computer Science, A. M. Borcyszkowski, S. Sokołowski (eds), 650–659.

  29. Romanowska, A. B., 1986, ‘On regular and regularized varieties’, Alg. Univ. 23 215–241.

    Google Scholar 

  30. Romanowska, A. B. and J. D. H. Smith, 1985, ‘From affine to projective geometry via convexity’, Universal Algebra and Lattice Theory, S.D. Comer, ed., Springer, Berlin, 255–269.

    Google Scholar 

  31. Romanowska, A. B. and J. D. H. Smith, 1985, Modal Theory, Heldermann, Berlin.

    Google Scholar 

  32. Romanowska, A. B. and J. D. H. Smith, 1989, ‘Subalgebra systems of idempotent entropie algebras’, J. Algebra 120, 247–262.

    Google Scholar 

  33. Romanowska, A. B. and J. D. H. Smith, 1991, ‘On the structure of semilattice sums’, Czech. J. Math. 41, 24–43.

    Google Scholar 

  34. Romanowska, A. B. and J. D. H. Smith 1993, ‘Duality for semilattice representations’, preprint.

  35. Semadeni, Z. and A. Wiweger, 1979, Einführung in die Theorie der Kategorien und Funktoren, Teubner, Leipzig.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romanowska, A.B., Smith, J.D.H. Semilattice-based dualities. Stud Logica 56, 225–261 (1996). https://doi.org/10.1007/BF00370148

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00370148

Key words