Skip to main content
Log in

Provability logics for natural turing progressions of arithmetical theories

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

Provability logics with many modal operators for progressions of theories obtained by iterating their consistency statements are introduced. The corresponding arithmetical completeness theorem is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Carlson, Modal logics with several operators and provability interpretations, Israel Journal of Mathematics 54 (1986), pp. 14–24.

    Google Scholar 

  2. S. Feferman, Transfinite recursive progressions of axiomatic theories, Journal of Symbolic Logic 27 (1962), No. 3, pp. 259–316.

    Google Scholar 

  3. G. Kreisel, Wie die Beweistheorie zu ihren Ordinalzahlen kam und kommt, Jahresbericht der Deutschen Mathematiker-Vereinigung 78 (1977), Heft 4, pp. 111–223.

    Google Scholar 

  4. F. Montagna, Provability in finite subtheories of PA, Journal of Symbolic Logic 52 (1987), No. 2, pp. 494–511.

    Google Scholar 

  5. K. Schütte, Beweistheorie, Springer, 1960.

  6. C. Smoryński, Modal Logic and Selfreference, Springer, 1985.

  7. C. Smoryński, Quantified modal logic and selfreference, Notre Dame Journal of Formal Logic 28 (1987), pp. 356–370.

    Google Scholar 

  8. R. Solovay, Provability interpretations of modal logic, Israel Journal of Mathematics 25 (1976), pp. 287–304.

    Google Scholar 

  9. A. Visser, A Course in Bimodal Provability Logic, Logic Group Preprint Series 20 (1987), University of Utrecht.

  10. С. Н, Артëмов, Приложения модальной логики в теории доказательств, In Неклассические логики и их применения, Вопросы кибернетики, М. Наука, 1982, pp. 3–20.

  11. Л. Д. Беклемишев, О классификации пропозициональных логик доказуемости, Известия АН СССР, cep. mat. 53 (1989), pp. 915–943.

  12. С. В. Горячев, Об интерпретируемости некоторых расширений арифметики, Математические заметки 40 (1986), pp. 561–572.

  13. U. Schmerl, A fine structure generated by reflection formulas, In Logic Colloquium '78, M. Boffa, D. van Dalen, K. McAloon (eds.), North-Holland, 1979, pp. 335–350.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beklemishev, L.D. Provability logics for natural turing progressions of arithmetical theories. Stud Logica 50, 107–128 (1991). https://doi.org/10.1007/BF00370390

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00370390

Keywords

Navigation