Skip to main content
Log in

A modern elaboration of the ramified theory of types

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

The paper first formalizes the ramified type theory as (informally) described in the Principia Mathematica [32]. This formalization is close to the ideas of the Principia, but also meets contemporary requirements on formality and accuracy, and therefore is a new supply to the known literature on the Principia (like [25], [19], [6] and [7]).

As an alternative, notions from the ramified type theory are expressed in a lambda calculus style. This situates the type system of Russell and Whitehead in a modern setting. Both formalizations are inspired by current developments in research on type theory and typed lambda calculus; see [3].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Abramsky, Dov M. Gabbay, and T.S.E. Maibaum, editors, 1992, Handbook of Logic in Computer Science, Volume 2: Background: Computational Structures. Oxford Science Publications.

  2. H. P. Barendregt, 1984, The Lambda Calculus: its Syntax and Semantics, North-Holland, Amsterdam, revised edition.

    Google Scholar 

  3. H. P. Barendregt, 1992, Lambda calculi with types, In [1], Oxford University Press, 117–309.

  4. P. Benacerraf and H. Putnam, editors, 1983, Philosophy of Mathematics, Cambridge University Press, second edition.

  5. E.W. Beth, 1959, The Foundations of Mathematics, Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam.

    Google Scholar 

  6. A. Church, 1940, A formulation of the simple theory of types, The Journal of Symbolic Logic 5, 56–68.

    Google Scholar 

  7. A. Church, 1976, Comparison of Russell's resolution of the semantic antinomies with that of Tarski, The Journal of Symbolic Logic 41, 747–760.

    Google Scholar 

  8. R.L. Constable et al, 1986, Implementing Mathematics with the Nuprl Proof Development System, Prentice-Hall, New Jersey.

    Google Scholar 

  9. H.B. Curry and R. Feys, 1958, Combinatory Logic, volume I of Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam.

    Google Scholar 

  10. H.B. Curry, J.R. Hindley, and J.P. Seldin, 1972, Combinatory Logic, volume II of Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam.

    Google Scholar 

  11. A.A. Fraenkel, Y. Bar-Hillel, and A. Levy, second edition, 1973, Foundations of Set Theory, Studies in Logic and the Foundations of Mathematics 67, North Nolland, Amsterdam.

    Google Scholar 

  12. G. Frege, 1879, Begriffschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens, Nebert, Halle. Also in [18].

  13. G. Frege, 1892, Grundgesetze der Arithmetik, begriffsschriftlich abgeleitet, volume I, Jena. Reprinted 1962 (Olms, Hildesheim).

  14. G. Frege, 1903, Grundgesetze der Arithmetik, begriffsschriftlich abgeleitet, volume II, Pohle, Jena. Reprinted 1962 (Olms, Hildesheim).

    Google Scholar 

  15. C.I. Gerhardt, editor, 1890, Die philosophischen Schriften von Gottfried Wilhelm Leibniz, Berlin.

  16. K. Gödel, 1931, Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I, Monatshefte für Mathematik und Physik 38, 173–198, German; English translation in [18].

    Google Scholar 

  17. K. Gödel, 1944, Russell's mathematical logic, in P.A. Schlipp, editor, The Philosophy of Bertrand Russell, Evanston & Chicago, Northwestern University. Also in [4].

  18. J. van Heijenoort, editor, 1967, From Frege to Gödel: A Source Book in Mathematical Logic, Harvard University Press, Cambridge, Massachusetts, 1879–1931.

    Google Scholar 

  19. D. Hilbert and W. Ackermann, first edition, 1928, Grundzüge der Theoretischen Logik, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen, Band XXVII, Springer Verlag, Berlin.

    Google Scholar 

  20. P. B. Jackson, 1995, Enhancing the Nuprl Proof Development System and Applying it to Computational Abstract Algebra, PhD thesis, Cornell University, Ithaca, New York.

    Google Scholar 

  21. F. Kamareddine and T. Laan, 1996, A reflection on Russell's ramified types and Kripke's hierarchy of truths, Journal of the Interest Group in Pure and Applied Logic 4, 195–213.

    Google Scholar 

  22. S. Kripke, 1975, Outline of a theory of truth, Journal of Philosophy 72, 690–716.

    Google Scholar 

  23. T.D.L. Laan, 1994, A formalization of the Ramified Type Theory, Technical Report 33, TUE Computing Science Reports, Eindhoven University of Technology.

  24. W. Van Orman Quine, 1963, Set Theory and its Logic, Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  25. F.P. Ramsey, 1925, The foundations of mathematics, Proceedings of the London Mathematical Society, 338–384.

  26. B. Russell, 1903, The Principles of Mathematics, Allen & Unwin, London.

    Google Scholar 

  27. B. Russell, 1908, Mathematical logic as based on the theory of types, American Journal of Mathematics 30. Also in [18].

  28. B. Russell, 1919, Introduction to Mathematical Philosophy, Allen & Unwin, London.

    Google Scholar 

  29. J. Terlouw, 1989, Een nadere bewijstheoretische analyse van GSTT's, Technical report, Department of Computer Science, University of Nijmegen.

  30. H. Weyl, 1960, Das Kontinuum, Veit, Leipzig, 1918, German; also in: Das Kontinuum und andere Monographien, Chelsea Pub. Comp., New York.

    Google Scholar 

  31. H. Weyl, 1946, Mathematics and logic: A brief survey serving as preface to a review of “The Philosophy of Bertrand Russell”, American Mathematical Monthly.

  32. A. N. Whitehead and B. Russell, 19101, 19272, Principia Mathematica, Cambridge University Press.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Co-operation Centre Tilburg and Eindhoven Universities. 1[32], Introduction, Chapter II, Section I, p. 37.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laan, T., Nederpelt, R. A modern elaboration of the ramified theory of types. Stud Logica 57, 243–278 (1996). https://doi.org/10.1007/BF00370835

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00370835

Key words