Abstract
We prove the finite model property (fmp) for BCI and BCI with additive conjunction, which answers some open questions in Meyer and Ono [11]. We also obtain similar results for some restricted versions of these systems in the style of the Lambek calculus [10, 3]. The key tool is the method of barriers which was earlier introduced by the author to prove fmp for the product-free Lambek calculus [2] and the commutative product-free Lambek calculus [4].
Similar content being viewed by others
References
van Benthem, J., 1991, Language in action. Categories, lambdas and dynamic logic, North-Holland, Amsterdam.
Buszkowski, W., 1982, ‘Some decision problems in the theory of syntactic categories’, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 28, 229–238.
Buszkowski, W., 1986, ‘Completeness results for Lambek syntactic calculus’, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 32, 13–28.
Buszkowski, W., 1987, ‘The logic of types’, in: J. T. Srzednicki (ed.), Initiatives in Logic, Nijhoff, Dordrecht.
Buszkowski, W., W. Marciszewski and J. van Benthem, 1988, (eds.), Categorial grammar, J. Benjamins, Amsterdam.
Došen, K., 1985, ‘A Completeness theorem for the Lambek calculus of syntactic categories’, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 31, 235–241.
Došen, K., and P. Schroeder-Heister, 1993, (eds.), Substructural logics, Oxford University Press, Oxford.
Dunn, J. M., ‘Partial gaggles applied to logics with restricted structural rules’, in [7].
Girard, J. Y., 1987, ‘Linear logic’, Theoretical Computer Science 50, 1–102.
Lambek, J., 1958, ‘The mathematics of sentence structure’, American Mathematical Monthly 65, 154–170, reprinted in [5].
Meyer, R. K., and H. Ono, 1994, ‘The finite model property for BCK and BCIW’, Studia Logica 53, 107–118.
Moortgat, M., 1988, Categorial investigations. Logical and linguistic aspects of the Lambek calculus, Foris, Dordrecht.
Oehrle, R. T., E. Bach and D. Wheeler, 1988, (eds.), Categorial grammars and natural language structures, Reidel, Dordrecht.
Ono, H., and Y. Komori, 1985, ‘Logics without the contraction rule’, Journal of Symbolic Logic 50, 169–201.
Pentus, M., 1993, Lambek calculus is L-complete, ILLC Prepublication Series, University of Amsterdam.
Wansing, H., 1992, The logic of information structures, Ph.D. Thesis, University of Amsterdam.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Buszkowski, W. The finite model property for BCI and related systems. Stud Logica 57, 303–323 (1996). https://doi.org/10.1007/BF00370837
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF00370837