Skip to main content
Log in

The finite model property for BCI and related systems

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

We prove the finite model property (fmp) for BCI and BCI with additive conjunction, which answers some open questions in Meyer and Ono [11]. We also obtain similar results for some restricted versions of these systems in the style of the Lambek calculus [10, 3]. The key tool is the method of barriers which was earlier introduced by the author to prove fmp for the product-free Lambek calculus [2] and the commutative product-free Lambek calculus [4].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. van Benthem, J., 1991, Language in action. Categories, lambdas and dynamic logic, North-Holland, Amsterdam.

    Google Scholar 

  2. Buszkowski, W., 1982, ‘Some decision problems in the theory of syntactic categories’, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 28, 229–238.

    Google Scholar 

  3. Buszkowski, W., 1986, ‘Completeness results for Lambek syntactic calculus’, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 32, 13–28.

    Google Scholar 

  4. Buszkowski, W., 1987, ‘The logic of types’, in: J. T. Srzednicki (ed.), Initiatives in Logic, Nijhoff, Dordrecht.

    Google Scholar 

  5. Buszkowski, W., W. Marciszewski and J. van Benthem, 1988, (eds.), Categorial grammar, J. Benjamins, Amsterdam.

    Google Scholar 

  6. Došen, K., 1985, ‘A Completeness theorem for the Lambek calculus of syntactic categories’, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 31, 235–241.

    Google Scholar 

  7. Došen, K., and P. Schroeder-Heister, 1993, (eds.), Substructural logics, Oxford University Press, Oxford.

    Google Scholar 

  8. Dunn, J. M., ‘Partial gaggles applied to logics with restricted structural rules’, in [7].

    Google Scholar 

  9. Girard, J. Y., 1987, ‘Linear logic’, Theoretical Computer Science 50, 1–102.

    Google Scholar 

  10. Lambek, J., 1958, ‘The mathematics of sentence structure’, American Mathematical Monthly 65, 154–170, reprinted in [5].

    Google Scholar 

  11. Meyer, R. K., and H. Ono, 1994, ‘The finite model property for BCK and BCIW’, Studia Logica 53, 107–118.

    Google Scholar 

  12. Moortgat, M., 1988, Categorial investigations. Logical and linguistic aspects of the Lambek calculus, Foris, Dordrecht.

    Google Scholar 

  13. Oehrle, R. T., E. Bach and D. Wheeler, 1988, (eds.), Categorial grammars and natural language structures, Reidel, Dordrecht.

    Google Scholar 

  14. Ono, H., and Y. Komori, 1985, ‘Logics without the contraction rule’, Journal of Symbolic Logic 50, 169–201.

    Google Scholar 

  15. Pentus, M., 1993, Lambek calculus is L-complete, ILLC Prepublication Series, University of Amsterdam.

  16. Wansing, H., 1992, The logic of information structures, Ph.D. Thesis, University of Amsterdam.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buszkowski, W. The finite model property for BCI and related systems. Stud Logica 57, 303–323 (1996). https://doi.org/10.1007/BF00370837

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00370837

Key words

Mathematics Subject Classification

Navigation