Skip to main content
Log in

On the electrostatic and steric similarity of lactam compounds and the natural substrate for bacterial cell-wall biosynthesis

  • Research Paper
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

Electrostatic and structural properties of a set of β-lactam, γ-lactam and nonlactam compounds have been analyzed and compared with those of a model of the natural substrate d-alanyl-d-alanine for the carboxy- and transpeptidase enzymes. This first comparison of the electrostatic properties has been based on a distributed multipole analysis of high-quality ab initio wave functions of the substrate and potential antibiotics. The electrostatic similarity of the substrate and active compounds is apparent, and contrasts with the electrostatic properties of the noninhibitors. This has been quantified to give a reasonable correlation with the MIC (Minimum Concentration for Inhibition) and with kinetic data (k2/K) in accordance with the model for interaction of the lactam compounds with dd-peptidase. These correlations provide a better prediction of antibacterial activity than purely structural criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Georgopapadakou, N.H. and Sykes, R.B., Handb. Exp. Pharmacol., 67 (1983) 1.

    Google Scholar 

  2. Waxman, D.J. and Strominger, J.L., Annu. Rev. Biochem., 52 (1983) 825.

    PubMed  Google Scholar 

  3. Tipper, D.J. and Strominger, J.L., Proc. Natl. Acad. Sci. USA, 54 (1965) 75.

    PubMed  Google Scholar 

  4. Lee, B., J. Mol. Biol., 61 (1971) 463.

    PubMed  Google Scholar 

  5. Frere, J.M., Kelly, J.A., Klein, D., Ghuysen, J.M., Claes, P. and Vanderhaeghe, H., Biochem. J., 203 (1982) 223.

    PubMed  Google Scholar 

  6. Cohen, N.C., Ernest, I., Fritz, H., Fuhrer, H., Rihs, G., Scartazzini, R. and Wirz, P., Helv. Chim. Acta, 70 (1987) 1967.

    Google Scholar 

  7. Wolfe, S. and Hoz, T., Can. J. Chem., 72 (1994) 1044.

    Google Scholar 

  8. Rodriguez, J., Manaut, F. and Sanz, F., J. Comput. Chem., 14 (1993) 922.

    Google Scholar 

  9. Weinstein, H. and Osman, R., In Richards, W.G. (Ed.) Computer-Aided Molecular Design, IBC Technical Services, London, U.K., 1989, pp. 105–118.

    Google Scholar 

  10. Richards, N.G.J. and Vinter, J.G., J. Comput.-Aided Mol. Design, 5 (1991) 1.

    Google Scholar 

  11. Orozco, M., Canela, E.I. and Franco, R., Mol. Pharmacol., 35 (1989) 257.

    PubMed  Google Scholar 

  12. Van de Waterbeemd, H., Carrupt, P.A. and Testa, B., J. Med. Chem., 29 (1986) 600.

    PubMed  Google Scholar 

  13. Luque, F.J., Sanz, F., Illas, F., Pouplana, R. and Smeyers, Y.G., Eur. J. Med. Chem., 23 (1988) 7.

    Google Scholar 

  14. Martin, M., Sanz, F., Campillo, M., Pardo, L., Perez, J. and Turmo, J., Int. J. Quantum Chem., 23 (1983) 1627.

    Google Scholar 

  15. Manaut, F., Lozoya, E. and Sanz, F., In Silipo, C. and Vitoria, A. (Eds.) QSAR: Rational Approaches to the Design of Bioactive Compounds, Elsevier, Amsterdam, the Netherlands, 1991, pp. 339–342.

    Google Scholar 

  16. Davis, A., Warrington, B.H. and Vinter, J.G., J. Comput.-Aided Mol. Design, 1 (1987) 97.

    Google Scholar 

  17. Vinter, J.G. and Trollope, K.I., J. Comput.-Aided Mol. Design, 9 (1995) 297.

    Google Scholar 

  18. Stone, A.J. and Alderton, M., Mol. Phys., 56 (1985) 1047.

    Google Scholar 

  19. Apaya, R.P., Lucchese, B., Price, S.L. and Vinter, J.G., J. Comput.-Aided Mol. Design, 9 (1995) 33.

    Google Scholar 

  20. Van der Wenden, E.M., Price, S.L., Apaya, R.P., IJzerman, A.P. and Soudijn, W., J. Comput.-Aided Mol. Design, 9 (1995) 44.

    Google Scholar 

  21. Labischinski, H., Barnickel, G., Naumann, D., Ronspeck, W. and Bradaczek, H., Biopolymers, 24 (1985) 2087.

    Google Scholar 

  22. Dauber-Osguthorpe, P., Roberts, V.A., Osguthorpe, D.J., Wolff, J., Genest, M. and Hagler, A.T., Protein Struct. Funct. Genet., 4 (1988) 31.

    Google Scholar 

  23. Insight II User Guide, v. 2.3.0, Biosym Technologies, San Diego, CA, 1993.

  24. Allen, F.H., Davies, J.E., Galloy, J.J., Johnson, O., Kennard, O., Macrae, C.F., Mitchell, E.M., Mitchell, G.F., Smith, J.M. and Watson, D.G., J. Chem. Inf. Comput. Sci., 31 (1991) 187.

    Google Scholar 

  25. Boles, M.O. and Girven, R.J., ActaCrystallogr., B32 (1976) 2279.

    Google Scholar 

  26. Van Meerssche, M., Germain, G., Declercq, J.P., Coene, B. and Moreaux, C., Cryst. Struct. Commun., 8 (1979) 287.

    Google Scholar 

  27. De Coen, J.L., Lamotte-Brasseur, J., Ghuysen, J.M., Frere, J.M. and Perkins, H.R., Eur. J. Biochem., 121 (1981) 221.

    PubMed  Google Scholar 

  28. Virudachalam, R. and Rao, V.S.R., Int. J. Pept. Protein Res., 10 (1977) 51.

    PubMed  Google Scholar 

  29. Neuhaus, F.C. and Hammes, W.P., Pharmacol. Ther., 14 (1981) 265.

    PubMed  Google Scholar 

  30. Simon, G.L., Morin, R.B. and Dahl, L.F., J. Am. Chem. Soc., 94 (1972) 8557.

    PubMed  Google Scholar 

  31. Kelly, J.A., Knox, J.R., Zhao, H., Frere, J.M. and Ghuysen, J.M., J. Mol. Biol., 209 (1989) 281.

    PubMed  Google Scholar 

  32. Boyd, D.B., J. Chem. Ed., 53 (1976) 483.

    Google Scholar 

  33. Boyd, D.B., J. Med. Chem., 18 (1975) 408.

    PubMed  Google Scholar 

  34. Laws, A.P. and Page, M.I., J. Chem. Soc., Perkin Trans. 2, (1989) 1577.

    Google Scholar 

  35. Rao, V.S.R. and Vasudevan, T.K., CRC Crit. Rev. Biochem., 14 (1983) 173.

    PubMed  Google Scholar 

  36. Blanpain, P.C., Nagy, J.B., Laurent, G.H. and Durant, F.V., J. Med. Chem., 23 (1980) 1283.

    PubMed  Google Scholar 

  37. Lamotte, J., Dive, G. and Ghuysen, J.M., Eur. J. Med. Chem., 26 (1991) 43.

    Google Scholar 

  38. Binkley, J.S., Pople, J.A. and Hehre, W.J., J. Am. Chem. Soc., 102 (1980) 939.

    Google Scholar 

  39. CADPAC5: The Cambridge Analytical Derivatives Package, Issue 5.0, 1992. A suite of quantum chemistry programs developed by Amos, R.D., with contributions from Alberts, I.L., Andrews, J.S., Colwell, S.M., Handy, N.C., Jayatilaka, D., Knowles, P.J., Kobayashi, R., Koga, N., Laidig, K.E., Malsen, P.E., Murray, C.W., Rice, J.E., Sanz, J., Simandiras, D., Stone, A.J. and Su, M.D.

  40. Price, S.L., Andrews, J.S., Murray, C.W. and Amos, R.D., J. Am. Chem. Soc., 114 (1992) 8268.

    Google Scholar 

  41. Price, S.L. and Stone, A.J., J. Chem. Phys., 86 (1987) 2859.

    Google Scholar 

  42. Stone, A.J., ORIENT v. 2: A program for calculating the electrostatic interactions between molecules, University of Cambridge, Cambridge, U.K., 1990.

    Google Scholar 

  43. Boyd, D.B., J. Med. Chem., 27 (1984) 63.

    PubMed  Google Scholar 

  44. Boyd, D.B., Eigenbrot, C., Indelicato, J.M., Miller, J.M., Pasini, C.E. and Woulfe, S.R., J. Med. Chem., 30 (1987) 528.

    PubMed  Google Scholar 

  45. Boyd, D.B., Snoddy, J.D. and Lin, H.-S., J. Comput. Chem., 12 (1991) 635.

    Google Scholar 

  46. Page, M.I. (Ed.) The Chemistry of β-Lactams, Chapman and Hall, New York, NY, 1992.

    Google Scholar 

  47. Goodman Gilman, A. and Goodman, L.S. (Eds.) The Pharmacological Basis of Therapeutics, Editorial Medica Panamericana, Buenos Aires, Argentina, 1986.

    Google Scholar 

  48. Baldwin, J.E., Lynch, G.P. and Pitlik, J., J. Antibiot., 44 (1991) 1.

    PubMed  Google Scholar 

  49. Cohen, N.C., J. Med. Chem., 26 (1983) 259.

    PubMed  Google Scholar 

  50. Allen, F.H., Kennard, O., Watson, D.G., Brammer, L., Orpen, A.G. and Taylor, R., J. Chem. Soc., Perkin Trans. 2, S1 (1987).

  51. Shin, W. and Woo Cho, S., Acta Crystallogr., C48 (1992) 1447.

    Google Scholar 

  52. Shiro, M., Nakai, H., Onoue, H. and Narisada, M., Acta Crystallogr., B36 (1980) 3137.

    Google Scholar 

  53. Balsamo, A., Domiano, F., Macchia, B., Macchia, F. and Rossello, A., Eur. J. Med. Chem., Chim. Ther., 26 (1991) 339.

    Google Scholar 

  54. Ratcliffe, R.W., Wildonger, K.J., di Michele, L., Douglas, A.W., Hajdu, R., Goegelman, R.T., Springer, J.P. and Hirshfield, J., J. Org. Chem., 54 (1989) 653.

    Google Scholar 

  55. Brown, A.G., Corbett, D.F., Goodacre, J., Harbridge, J.B., Howarth, T.T., Ponsford, R.J., Stirling, I. and King, T.J., J. Chem. Soc., Perkin Trans. 1, (1984) 635.

    Google Scholar 

  56. Baldwin, J.E., Adlington, R.M., Jones, R.H., Schofield, C.J., Zaracostas, C. and Greengrass, C.W., J. Chem. Soc., Chem. Commun., (1985) 194.

  57. Wada, Y., Takamoto, M., Tsubotani, S. and Kamiya, K., Acta Crystallogr., C43 (1987) 1786.

    Google Scholar 

  58. Pearlman, D. (Ed.) Structure-Activity Relationships among the Semisynthetic Antibiotics, Academic Press, New York, NY, 1977.

    Google Scholar 

  59. Morin, R. and Gorman, M. (Eds.) Chemistry and Biology of β-Lactam Antibiotics: Nontraditional β-Lactam Antibiotics, Vol. 2, 1982.

  60. Morin, R. and Gorman, M. (Eds.) Chemistry and Biology of β-Lactam antibiotics: Biochemistry, Vol. 3, 1982.

  61. Demain, A.L. and Solomon, N.A. (Eds.) Antibiotics Containing the β-Lactam Structure II, Springer, Berlin, Germany, 1983.

    Google Scholar 

  62. Ternansky, R.J. and Draheim, S.E., J. Med. Chem., 36 (1993) 3119.

    Google Scholar 

  63. Baldwin, J.E., Adlington, R.M., Jones, R.H., Schofield, C.J., Zaracostas, C. and Greengrass, C.W., Tetrahedron, 17 (1986) 4879.

    Google Scholar 

  64. Nozaki, Y., Katayama, N., Ono, H., Tsubotani, S., Harada, S., Okazaki, H. and Nakao, Y., Nature, 325 (1987) 179.

    PubMed  Google Scholar 

  65. Gordon, E.M., Pluscec, J. and Ondetti, M.A., Tetrahedron Lett., 22 (1981) 1871.

    Google Scholar 

  66. Frere, J.M., Biochem. Pharmacol., 26 (1977) 2203.

    PubMed  Google Scholar 

  67. Kelly, J.A., Frere, J.M., Klein, D. and Ghuysen, J.M., Biochem. J., 199 (1981) 129.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frau, J., Price, S.L. On the electrostatic and steric similarity of lactam compounds and the natural substrate for bacterial cell-wall biosynthesis. J Computer-Aided Mol Des 10, 107–122 (1996). https://doi.org/10.1007/BF00402819

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00402819

Keywords

Navigation