Skip to main content

Advertisement

Log in

Artificial neural network based robot control: An overview

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

The current thrust of research in robotics is to build robots which can operate in dynamic and/or partially known environments. The ability of learning endows the robot with a form of autonomous intelligence to handle such situations. This paper focuses on the intersection of the fields of robot control and learning methods as represented by artificial neural networks. An in-depth overview of the application of neural networks to the problem of robot control is presented. Some typical neural network architectures are discussed first. The important issues involved in the study of robotics are then highlighted. This paper concentrates on the neural network applications to the motion control of robots involved in both non-contact and contact tasks. The current state of research in this area is surveyed and the strengths and weakness of the present approaches are emphasized. The paper concludes by indentifying areas which need future research work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • AbidiM. A. and GonzalezR. C. (eds): 1992, Data Fusion in Robotics and Machine Intelligence, Academic Press, San Diego.

    Google Scholar 

  • AlbusJ. S.: 1975, A new approach to manipulator control: The cerebellar model articulation controller, Trans. ASME J. Dynamic Systems, Measurement, and Control, Series G, 97(3), 220–227.

    Google Scholar 

  • AlbusJ. S.: 1975, Data storage in the cerebellar model articulation controller, Trans. ASME J. Dynamic Systems, Measurement, and Control, Series G, 97(3), 228–233.

    Google Scholar 

  • Allen, P. K., Yoshimi, B. and Timcenko, A.: 1991, Real-time visual servoing, in Proc. IEEE Int. Conf. Robot. Automat., pp. 851–856.

  • AllenP. K., TimcenkoA., YoshimiB. and MichelmanP.: 1993, Automated tracking and grasping of a moving object with a robotic hand-eye system, IEEE Trans. Robot. Automat. 9(2), 152–165.

    Google Scholar 

  • An, C. H., Atkeson, C. G., Griffiths, J. D. and Hollerbach, J. M.: 1987, Experimental evaluation of feedforward and computed torque control, in Proc. IEEE Int. Conf. Robot. Automat., pp. 165–168.

  • AnanthramanS. and GargD. P.: 1993, Training backpropagation and CMAC neural networks for control of a SCARA robot, Eng. Appl. Artificial Intelligence 6(2), 105–115.

    Google Scholar 

  • Ananthraman, S. and Garg, D. P.: 1993, Neurocontrol of cooperative dual robot manipulators, Intelligent Control Systems, ASME Spec. Publ. DSC-48, 57–65.

  • AndersonJ. A. and RosenfeldE.: 1988, Neurocomputing: Foundations of Research, MIT Press, Cambridge, MA.

    Google Scholar 

  • AndersonJ. A, PellioniszA. and RosenfeldE.: 1988, Neurocomputing: Directions for Research, MIT Press, Cambridge, MA.

    Google Scholar 

  • ArimotoS., KawamuraS. and MiyazakiF.: 1984, Bettering operation of robots by learning, J. Robot. Systems 1, 123–140.

    Google Scholar 

  • Asada, H.: 1990, Teaching and learning of compliance using neural nets: Representation and generation of nonlinear compliance, in Proc. IEEE Int. Conf. Robot. Automat., pp. 1237–1244.

  • AtkesonC. G., AnC. H. and HollerbachJ. M.: 1986, Estimation of inertial parameters of manipulator load and links, Int. J. Robot. Res. 5, 101–119.

    Google Scholar 

  • Atkeson, C. G. and Reinkensmeyer, D. J.: 1988, Using associative conten-addressable memories to control robots, in Proc. IEEE Conf. Decision and Control, pp. 792–797.

  • BartoA. G, SuttonR. S. and AndersonC. W.: 1983, Neuronlike elements that can solve difficult learning control problems, IEEE Trans. Systems, Man and Cybernetics 13, 835–846.

    Google Scholar 

  • BartoA. G. and AnandanP.: 1985, Pattern recognizing stochastic learning automata, IEEE Trans. Systems, Man and Cybernetics 15, 360–375.

    Google Scholar 

  • BartoA. G.: 1990, Connectionist learning for control, in W. T.Miller et al. (eds), Neural Networks for Control, MIT Press, Cambridge, MA, pp. 5–58.

    Google Scholar 

  • Barto, A. G. and Jordan, M. I.: 1987, Gradient following without backpropagation in layered networks, in Proc. IEEE 1st Ann. Conf. Neural Networks, Vol. II, pp. 629–636.

  • BekeyG. A.: 1992, Robotics and neural networks, in B.Kosko (ed.), Neural Networks for Signal Processing, Prentice-Hall, Englewood Chiffs, NJ, pp. 161–187.

    Google Scholar 

  • BekeyG. A. and GoldbergK. Y.: 1993, Neural Networks in Robotics, Kluwer Academic Publishers, Norwell, MA.

    Google Scholar 

  • BerenjiH. R.: 1992, An architecture for designing fuzzy controllers using neural networks, Int. J. Approximate Reasoning 6(2), 267–292.

    Google Scholar 

  • ChurchlandP. S. and SejnowskiT. J.: 1992, The Computational Brain, MIT Press, Cambridge, MA.

    Google Scholar 

  • CohenM. and FlashT.: 1991, Learning impedance parameters for robot control using an associative search network, IEEE Trans. Robot. Automat. 7(3), 382–390.

    Google Scholar 

  • Cooperstock J. R. and Milios, E.: 1992, Adaptive neural networks for vision-guided position control of a robot arm, in Proc. IEEE Int. Symp. Intelligent Control, pp. 397–403.

  • Cooperstock, J. R. and Milios, E.: 1993, An efficiently trainable neural network based vision-guided robot arm, in Proc. IEEE Int. Conf. Robot. Automat., pp. 738–743.

  • CraigJ. J.: 1986, Introduction to Robotics: Mechanics and Control, Addison-Wesley, Reading, MA.

    Google Scholar 

  • CraigJ. J., HsuP. and SastryS. S.: 1987, Adaptive control of mechanical manipulators, Int. J. Robot. Res. 6, 16–28.

    Google Scholar 

  • CybenkoG.: 1989, Approximations by superpositions of a sigmoidal function, Math. Control Signal Systems 2, 303–314.

    Google Scholar 

  • DaunichtW. J.: 1989, Control of manipulators by neural networks, IEE Proc. 136(5), Pt. E, 395–399.

    Google Scholar 

  • DubowskyS. and DesForgesD. T.: 1979, The application of model-referenced adaptive control to robotic manipulators, Trans. ASME J. Dynamic Systems, Measurement, and Control 101, 193–200.

    Google Scholar 

  • Elsley, R. K.: 1988, A learning architecture for control based on back-propagation neural networks, in Proc. IEEE Conf. Neural Networks, Vol. II, pp. 587–594.

  • Franklin, J. A.: 1988, Refinement of robot motor skills through reinforcement learning, in Proc. 27th Conf. Decision and Control, pp. 1096–1101.

  • Franklin, J.: 1989, Historical perspective and state of the art in connectionist learning control, in Proc. 28th Conf. Decision and Control, pp. 1730–1736.

  • FuK. S., GonzalezR. C. and LeeC. S. G.: 1987, Robotics: Control, Sensing, Vision, Intelligence, McGraw-Hill, New York.

    Google Scholar 

  • GrossbergS. and KupersteinM.: 1986, Neural dynamics of adaptive sensory-motor control, Elsevier, Amsterdam. (Reprinted by Pergamon, New York, 1989).

    Google Scholar 

  • Guez, A. and Ahmad, Z.: 1988, Solution to the inverse kinematic problem in robotics by neural networks, in Proc. IEEE Conf. Neural Networks, Vol. II, pp. 617–624.

  • GullapalliV.: 1990, A stochastic reinforcement learning algorithm for learning real-valued functions, Neural Networks 3, 671–692.

    Google Scholar 

  • Gullapalli, V., Grupen, R. A. and Barto, A. G.: 1992, Learning reactive admittance control, in Proc. IEEE Int. Conf. Robot. Automat., pp. 1475–1480.

  • Gullapalli, V., Barto, A. G. and Grupen, R. A.: 1994, Learning admittance mappings for force-guided assembly, in Proc. IEEE Int. Conf. Robot. Automat., pp. 2633–2638.

  • Handelman, D. A., Lane, S. H. and Gelfand, J. J.: 1990, Integrating neural networks and knowledge-based systems for intelligent robotic control, IEEE Control Systems Magazine 77–87.

  • HertzJ., KroghA. and PalmerR. G.: 1991, Introduction to the Theory of Neural Computation, Addison-Wesley, Redwood City, CA.

    Google Scholar 

  • HoganN.: 1985, Impedance control: An approach to manipulation, Parts I–III, J. Dynamic Systems, Measurement and Control 107, 1–24.

    Google Scholar 

  • HollerbachJ. M.: 1980, A recursive Lagrangian formulation of manipulator dynamics and a comparative study of dynamics formulation complexity, IEEE Trans. Systems, Man, and Cybernetics SMC-10, 730–736.

    Google Scholar 

  • Hopfield, J. J.: 1982, Neural networks and physical systems with emergent collective computational abilities, in Proc. Nat. Acad. Sci. USA 79, 2554–2558. (Reprinted in Anderson and Rosenfeld (eds), Neurocomputing: Foundations of Research, MIT Press, Cambridge, MA, 1988).

  • Hopfield, J. J.: 1984, Neurons with graded responses have collective computational properties like those of two-state neurons, in Proc. Nat. Acad. Sci. USA 81, 3088–3092. (Reprinted in Anderson and Rosenfeld (eds), Neurocomputing: Foundations of Research, MIT Press, Cambridge, MA, 1988.)

  • HorneB., JamshidiM. and VadieeN.: 1990, Neural networks in robotics: A survey, J. Intelligent and Robot. Systems 3, 51–60.

    Google Scholar 

  • HornikK., StinchcombeM. and WhiteH.: 1989, Multilayer feedforward networks are universal approximators, Neural Networks 2, 359–366.

    Google Scholar 

  • HuntK. J., SbarbaroD., ZbikowskiR. and GawthropP. J.: 1992, Neural networks for control systems, a survey, Automatica 28(6), 1083–1112.

    Google Scholar 

  • Johnson, M. A. and Leahy, M. B.: 1990, Adaptive model-based neural network control, in Proc. IEEE Int. Conf. Robot. Automat., pp. 1704–1709.

  • JordanM. I.: 1988, Supervised Learning and Systems with Excess Degrees of Freedom, Technical Report 88-27, University of Massachusetts, Amherst, MA.

    Google Scholar 

  • JordanM. I. and RumelhartD. E.: 1990, Forward Models: Supervised Learning with a Distal Teacher, Center for Cognitive Science Occasional Paper No. 40, Massachusetts Institute of Technology, Cambridge, MA.

    Google Scholar 

  • JosinG.: 1988, Neural space generalization of a topological transformation, Biol. Cybernetics 59, 283–290.

    Google Scholar 

  • Josin, G., Charney, D. and White, D.: 1988, Robot control using neural networks, in Proc. IEEE Conf. Neural Networks, Vol. II, pp. 625–631.

  • KaticD. and VukobratovicM.: 1994, Connectionist approaches to the control of manipulation robots at the executive hierarchical level: An overview, J. Intelligent Robot. Systems 10, 1–36.

    Google Scholar 

  • Katic, D. and Vukobratovic M.: 1994, Learning impedance control of manipulation robots by feedforward connectionist strucures, in Proc. IEEE Int. Conf. Robotics and Automation, pp. 45–50.

  • KawatoM., UnoY., IsobeM. and SuzukiR.: 1987, A hierarchical model for voluntary movement and its application to robotics, Proc. IEEE Conf. Neural Networks 4, 573–582.

    Google Scholar 

  • KawatoM., UnoY., IsobeM. and SuzukiR.: 1988, Hierarchical neural network model for voluntary movement with application to robotics, IEEE Control Systems Magazine 8(2), 8–16.

    Google Scholar 

  • KirkpatrickS., GelattC. D. and VecchiM. P.: 1983, Optimization by simulated annealing, Science 220, 671–680.

    Google Scholar 

  • KohonenT.: 1987, Self-Organization and Associative Memory, Springer Series in Information Science, Springer-Verlag, Berlin.

    Google Scholar 

  • KoivoA. J. and GuoT. H.: 1983, Adaptive linear controller for robotic manipulators, IEEE Trans. Automatic Control AC-28, 162–171.

    Google Scholar 

  • KoskoB.: 1992, Neural Networks for Signal Processing, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • KraftL. G. and CampagnaD. P.: 1990, A comparison between CMAC neural network control and two traditional adaptive control systems, IEEE Control Systems Magazine 10(3), 36–43.

    Google Scholar 

  • Kröse, B. J. A., van der Smagt, P. P. and Groen, F. C. A.: A one-eyed self learning robot manipulator, in G. A Bekey and K. Y. Goldberg (eds), Neural Networks in Robotics, Kluwer Academic Publishers, Norwell, MA, pp. 19–28.

  • KungS. and HwangJ.: 1989, Neural network architectures for robotic applications, IEEE Trans. Robot. Automat. 5(5), 641–657.

    Google Scholar 

  • Kuperstein, M.: 1987, Adaptive visual-motor coordination in multijoint robots using parallel architecture, in Proc. IEEE Conf. Robot. Automat., pp. 1595–1602.

  • KupersteinM. and RubinsteinJ.: 1989, Implementation of an adaptive neural controller for sensory-motor coordination, IEEE Control Systems Magazine 9(3), 25–29.

    Google Scholar 

  • KupersteinM. and WangJ.: 1990, Neural controller for adaptive movements with unforeseen payloads, IEEE Trans. Neural Networks 1(1), 137–142.

    Google Scholar 

  • KupersteinM.: 1991, INFANT neural controller for adaptive sensory-motor coordination, Neural Networks 4, 131–145.

    Google Scholar 

  • LeahyM. B., JohnsonM. A. and RogersS. K.: 1991, Neural network payload estimation for adaptive robot control, IEEE Trans. Neural Networks 2(1), 93–100.

    Google Scholar 

  • LiangF. and ElMaraghyH. A.: 1994, Direct adaptive neurocontrol of flexible joint robots using localized polynomial networks, Proc. IEEE Int. Conf. Robot. Automat. 3, 3186–3191.

    Google Scholar 

  • LiuS. and AsadaH.: 1993, Task-level on-line learning using neural networks and its application to deburring robots, Advances Robot., Mechatronics, and Haptic Interfaces DSC-49, 333–338.

    Google Scholar 

  • LuhJ. Y. S., WalkerM. W. and PaulR. P.: 1980a, Resolved-acceleration control of mechanical manipulators, IEEE Trans. Automatic Control AC-25, 468–474.

    Google Scholar 

  • LuhJ. Y. S., WalkerM. W. and PaulR. P.: 1980b, On-line computational scheme for mechanical manipulators, Trans. ASME J. Dynamic Systems, Measurement, and Control 102, 69–76.

    Google Scholar 

  • MartinetzT. M., RitterH. J. and SchultenK. J.: 1990, Three-dimensional neural net for learning visuomotor coordination of a robot arm, IEEE Trans. Neural Networks, 1(1), 131–136.

    Google Scholar 

  • MartinetzT. M. and SchultenK.: 1991, A ‘Neural-gas’ network learns topologies, in Kohonen et al. (ed.), Proc. Int. Conf. Artificial Neural Networks, Espoo, Finland, Vol. 1, Elsevier, New York, pp. 397–407.

    Google Scholar 

  • MelB. W.: 1988, MURPHY: A robot that learns by doing, Neural Information Processing Systems, American Institute of Physics, New York, 543–553.

    Google Scholar 

  • MelB. W.: 1989, Further explorations in visually guided reaching, in D. S.Touretsky (ed.), Advances in Neural Information Processing Systems, Vol. 1, Morgan Kaufmann, Palo Alto, pp. 348–355

    Google Scholar 

  • MelB. W.: 1990, Connectionist Robot Motion Planning: A Neurally-Inspired Approach to Visually-Guided Reaching, Academic Press, San Diego.

    Google Scholar 

  • MillerW. T., GlanzF. H. and KraftL. G.: 1987, Application of a general learning algorithm to the control of robotic manipulators, Int. J. Robot. Res. 6(2), 84–98.

    Google Scholar 

  • MillerW. T.: 1987, Sensor-based control of robotic manipulators using a general learning algorithm, IEEE J. Robot. Automat. RA-3(2), 157–165.

    Google Scholar 

  • MillerW. T.: 1989, Real-time application of neural networks for sensor-based control of robots with vision, IEEE Trans. Systems, Man, and Cybernetics 19(4), 825–831.

    Google Scholar 

  • MillerW. T., HewesR. P., GlanzF. H. and KraftL. G.: 1990, Real-time dynamic control of an industrial manipulator using a neural-network-based learning controller, IEEE Trans. Robot. Automat. 6(1), 1–9.

    Google Scholar 

  • MillerW. T., SuttonR. S. and WerbosP. J.: 1990, Neural Networks for Control, MIT Press, Cambridge, MA.

    Google Scholar 

  • MiyamotoH., KawatoM., SetoyamaT. and SuzukiR.: 1988, Feedback-error-learning neural network for trajectory control of a robotic manipulator, Neural Networks 1, 251–265.

    Google Scholar 

  • MukhopadhyayS. and NarendraK. S.: 1993, Disturbance rejection in nonlinear systems using neural networks. IEEE Trans. Neural Networks 4(1), 63–72.

    Google Scholar 

  • NagchaudhuriA., ThintM. and GargD. P.: 1992, Camera-robot transform for vision guided tracking in a manufacturing workcell, J. Intelligent Robot. Systems: Theory and Applications 5(3), 283–298.

    Google Scholar 

  • NarendraK. S. and AnnaswamyA. M.: 1989, Stable Adaptive Systems, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • NarendraK. S. and ParthasarathyK.: 1990, Identification and control of dynamic systems using neural networks, IEEE Trans. Neural Networks 1(1), 4–27.

    Google Scholar 

  • NewtonR. T. and XuY.: 1993, Real-time implementation of neural network learning control of a flexible space manipulator, Proc. IEEE Int. Conf. Robot. Automat. 1, 135–141.

    Google Scholar 

  • Nowe, A.: 1994, Fuzzy Reinforcement Learning: An Overview, Technical Report 94-1, Department INFO, Vrije Universiteit Brussel.

  • Papanikolopoulos, N., Kanade, T. and Khosla, P. K.: 1991a, Vision and control techniques for robotic visual tracking, in Proc. IEEE Int. Conf. Robot. Automat., pp. 857–863.

  • Papanikolopoulos, N., Khosla, P. K. and Kanade, T.: 1991b, Adaptive robotic visual tracking, in Proc. Amer. Control Conf., pp. 962–967.

  • PapanikolopoulosN., KhoslaP. K. and KanadeT.: 1993, Visual tracking of a moving target by a camera mounted on a robot: A combination of control and vision, IEEE Trans. Robot. Automat. 9(1), 14–35.

    Google Scholar 

  • PoggioT. and GirosiF.: 1990, Networks for approximation and learning, Proc. IEEE 7(9), 1481–1497.

    Google Scholar 

  • PsaltisD., SiderisA. and YamamuraA. A.: 1987, Neural Controllers, Proc. IEEE Int. Conf. on Neural Networks 4, 551–558.

    Google Scholar 

  • PsaltisD., SiderisA. and YamamuraA. A.: 1988, A multilayered neural network controller, IEEE Control Systems Magazine 8(2), 17–21.

    Google Scholar 

  • Raibert, M. H.: 1977, Analytical equations vs. table look-up for manipulation: a unifying concept, in Proc. IEEE Conf. Decision and Control, pp. 576–579.

  • RaibertM. H.: 1978, A model for sensorimotor control and learning, Biol. Cybernetics 29(1), 29–36.

    Google Scholar 

  • RaibertM. H. and CraigJ. J.: 1981, Hybrid position/force control of manipulators, Trans. ASME J. Dynamic Systems, Measurement, and Control 102, 126–133.

    Google Scholar 

  • ReadmanM. C.: 1994, Flexible Joint Robots, CRC Press, Boca Raton.

    Google Scholar 

  • RumelhartD. E., HintonG. E. and WilliamsR. J.: 1986, Learning internal representations by backpropagation errors, Nature 323, 533–536.

    Google Scholar 

  • Saito, F. and Fukuda, T.: 1994, Learning architecture for real robotic systems — extension of connectionist Q-learning for continuous robot control domain, in Proc. IEEE Int. Conf. Robot. Automat., pp. 27–32.

  • SaridisG. N. and StephanouH. E.: 1977, A hierarchical approach to the control of a prosthetic arm, IEEE Trans. Systems, Man, and Cybernetics SMC-7(6), 407–420.

    Google Scholar 

  • SaridisG. N.: 1983, Intelligent robotic control, IEEE Trans. Automatic Control AC-28(5), 547–557.

    Google Scholar 

  • Saridis, G. N. and Valavanis, K. P.: 1985, Information theoretic approach for knowledge engineering and intelligent machines, in Proc. Amer. Control Conf., pp. 1098–1103.

  • SchalkoffR. J.: 1992, Pattern Recognition: Statistical, Structural, and Neural Approaches, Wiley, New York.

    Google Scholar 

  • SerajiH.: 1987, Direct adaptive control of manipulators in Cartesian space, J. Robot. Systems 4, 157–178.

    Google Scholar 

  • SingerN. C. and SeeringW.: 1990, Preshaping command inputs to reduce system vibration, ASME J. Dynamic Systems, Measurement and Control 112(1), 76–82.

    Google Scholar 

  • SlotineJ. E. and LiW.: 1988, Adaptive manipulator control: A case study, IEEE Trans. Automatic Control 33(11), 995–1003.

    Google Scholar 

  • SmagtVan derP. P. and KröseB. J. A.: 1991, A real-time learning neural robot controller, in Kohonen et al. (ed.), Proc. Int. Conf. Artificial Neural Networks, Espoo, Finland, Vol. 1, Elsevier, New York, pp. 351–356.

    Google Scholar 

  • Sobajic, D. J., Lu, J. and Pao, Y.: 1988, Intelligent control of the intelledex 605T robot manipulator, in Proc. IEEE Conf. Neural Networks, Vol. II, pp. 633–640.

  • SpongM. W., LewisF. L. and AbdallahC. T. (eds): 1993, Robot Control: Dynamics, Motion Planning, and Analysis, IEEE Press, New York.

    Google Scholar 

  • Sundareshan, M. K. and Askew, C.: 1994, Neural network-based payload adaptive variable structure control of a flexible manipulator arm, in Proc. IEEE Int. Conf. Neural Networks, pp. 2616–2621.

  • TzafestasS. G. (ed.): 1993, Applied Control: Current Trends and Modern Methodologies, Marcel Dekker, New York.

    Google Scholar 

  • TakegakiM. and ArimotoA.: 1981, An adaptive trajectory control of manipulators, Int. J. Control 34, 219–230.

    Google Scholar 

  • TankD. and HopfieldJ.: 1985, ‘Neural’ computation of decisions in optimization problems, Biol. Cybernetics 52, 141–152.

    Google Scholar 

  • Torfs, D., Gorinevsky, D. and Goldenberg, A.: 1994, Experiments in feedforward shaping control of direct-drive robot using RBF network, in Proc. IEEE Int. Conf. Neural Networks, pp. 2737–2742.

  • ValavanisK. P. and SaridisG. N.: 1988, Information theoretic modeling of intelligent robotic systems, IEEE Trans. Systems, Man and Cybernetics 18(6), 852–872.

    Google Scholar 

  • Valavanis, K. P. and Saridis, G. N.: 1990, A review of intelligent control-based methodologies for modeling and analysis of hierarchically intelligent systems, in Proc. IEEE Int. Symp. Intelligent Control, pp. 15–20.

  • ValavanisK. P. and SaridisG. N.: 1992, Intelligent Robotic Systems: Theory, Design and Applications, Kluwer Academic Publishers, Boston.

    Google Scholar 

  • VoglT. P., MangisJ. K., RiglerA. K., ZinkW. T. and AlkonD. L.: 1988, Accelerating the convergence of the backpropagation method, Biol. Cybernetics 59, 257–263.

    Google Scholar 

  • VukobratovicM. and KaticD.: 1993, Connectionist control structures for high-efficiency learning in robotics, in Applied Control: Current Trend and Modern Methodologies, Marcel Dekker, New York, pp. 705–753.

    Google Scholar 

  • WalkerM. W. and OrinD. E.: 1982, Efficient dynamic computer simulation of robotic mechanisms, Trans. ASME J. Dynamic Systems, Measurement, and Control 104, 205–211.

    Google Scholar 

  • WalterJ. A. and SchultenK. J.: 1993, Implementation of self-organizing neural networks for visuo-motor control of an industrial robot, IEEE Trans. Neural Networks 4, 86–95.

    Google Scholar 

  • Watkins, C. J. C. H.: 1989, Learning With Delayed Rewards, PhD. Thesis, Psychology Dept., Cambridge University.

  • Weiss, L. E., Sanderson, A. C. and Neuman, C. P.: 1985, Dynamic visual servo control of robots: An adaptive image-based approach, in Proc. IEEE Int. Conf. Robot. Automat., pp. 662–668.

  • WeissL. E., SandersonA. C. and NeumanC. P.: 1987, Dynamic sensor-based control of robots with visual feedback, IEEE Robot. Automat. RA-3(5), 404–417.

    Google Scholar 

  • Werbos, P. J.: 1974, Beyond regression: New tools for prediction and analysis in the behavioral sciences, PhD. Thesis, Harvard University, Committee on Applied Mathematics.

  • WerbosP. J.: 1990, Overview of designs and capabilities, in W. T.Miller et al. (ed), Neural Networks for Control, MIT Press, Cambridge, MA, pp. 59–65.

    Google Scholar 

  • WerbosP. J.: 1992, Neurocontrol and supervised learning: an overview and evaluation, in D. A.White and D. A.Sofge (eds), Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches, Van Nostrand Reinhold, New York, pp. 65–89.

    Google Scholar 

  • WhitneyD. E.: 1987, Historical perspective and state of the art in robot force control, Int. Robot. Res. 6, 3–14.

    Google Scholar 

  • Widrow, B., McCool, J. and Medoff, B.: 1978, Adaptive control by inverse modeling, in 12th Asilomar Conf. Circuits, Systems and Computers, pp. 90–94.

  • WilsonG. and PawleyG.: 1988, On the stability of the traveling salesman problem of Hopfield and Tank, Biol. Cybernetics 58, 63–70.

    Google Scholar 

  • Yegerlehner, J. D. and Meckl, P. H.: 1993, Experimental evaluation of neural network controller for robot undergoing large payload changes, in Proc. IEEE Int. Conf. Robot. Automat., pp. 744–749.

  • Yeung, D. T. and Bekey, G. A.: 1989, Using a context-sensitive learning network for robot arm control, in Proc. IEEE Int. Conf. Robot. Automat., Vol. III, pp. 1441–1447.

  • ZadehL. A.: 1965, Fuzzy sets, Information and Control 8, 338–353.

    Google Scholar 

  • ZemanV., PatelR. V. and KhorasaniK.: 1990, A neural net controller for flexible-joint manipulators, Proc. Amer. Control Conf. 3, 3025–3027.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prabhu, S.M., Garg, D.P. Artificial neural network based robot control: An overview. J Intell Robot Syst 15, 333–365 (1996). https://doi.org/10.1007/BF00437601

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00437601

Key words