Abstract
The current thrust of research in robotics is to build robots which can operate in dynamic and/or partially known environments. The ability of learning endows the robot with a form of autonomous intelligence to handle such situations. This paper focuses on the intersection of the fields of robot control and learning methods as represented by artificial neural networks. An in-depth overview of the application of neural networks to the problem of robot control is presented. Some typical neural network architectures are discussed first. The important issues involved in the study of robotics are then highlighted. This paper concentrates on the neural network applications to the motion control of robots involved in both non-contact and contact tasks. The current state of research in this area is surveyed and the strengths and weakness of the present approaches are emphasized. The paper concludes by indentifying areas which need future research work.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
AbidiM. A. and GonzalezR. C. (eds): 1992, Data Fusion in Robotics and Machine Intelligence, Academic Press, San Diego.
AlbusJ. S.: 1975, A new approach to manipulator control: The cerebellar model articulation controller, Trans. ASME J. Dynamic Systems, Measurement, and Control, Series G, 97(3), 220–227.
AlbusJ. S.: 1975, Data storage in the cerebellar model articulation controller, Trans. ASME J. Dynamic Systems, Measurement, and Control, Series G, 97(3), 228–233.
Allen, P. K., Yoshimi, B. and Timcenko, A.: 1991, Real-time visual servoing, in Proc. IEEE Int. Conf. Robot. Automat., pp. 851–856.
AllenP. K., TimcenkoA., YoshimiB. and MichelmanP.: 1993, Automated tracking and grasping of a moving object with a robotic hand-eye system, IEEE Trans. Robot. Automat. 9(2), 152–165.
An, C. H., Atkeson, C. G., Griffiths, J. D. and Hollerbach, J. M.: 1987, Experimental evaluation of feedforward and computed torque control, in Proc. IEEE Int. Conf. Robot. Automat., pp. 165–168.
AnanthramanS. and GargD. P.: 1993, Training backpropagation and CMAC neural networks for control of a SCARA robot, Eng. Appl. Artificial Intelligence 6(2), 105–115.
Ananthraman, S. and Garg, D. P.: 1993, Neurocontrol of cooperative dual robot manipulators, Intelligent Control Systems, ASME Spec. Publ. DSC-48, 57–65.
AndersonJ. A. and RosenfeldE.: 1988, Neurocomputing: Foundations of Research, MIT Press, Cambridge, MA.
AndersonJ. A, PellioniszA. and RosenfeldE.: 1988, Neurocomputing: Directions for Research, MIT Press, Cambridge, MA.
ArimotoS., KawamuraS. and MiyazakiF.: 1984, Bettering operation of robots by learning, J. Robot. Systems 1, 123–140.
Asada, H.: 1990, Teaching and learning of compliance using neural nets: Representation and generation of nonlinear compliance, in Proc. IEEE Int. Conf. Robot. Automat., pp. 1237–1244.
AtkesonC. G., AnC. H. and HollerbachJ. M.: 1986, Estimation of inertial parameters of manipulator load and links, Int. J. Robot. Res. 5, 101–119.
Atkeson, C. G. and Reinkensmeyer, D. J.: 1988, Using associative conten-addressable memories to control robots, in Proc. IEEE Conf. Decision and Control, pp. 792–797.
BartoA. G, SuttonR. S. and AndersonC. W.: 1983, Neuronlike elements that can solve difficult learning control problems, IEEE Trans. Systems, Man and Cybernetics 13, 835–846.
BartoA. G. and AnandanP.: 1985, Pattern recognizing stochastic learning automata, IEEE Trans. Systems, Man and Cybernetics 15, 360–375.
BartoA. G.: 1990, Connectionist learning for control, in W. T.Miller et al. (eds), Neural Networks for Control, MIT Press, Cambridge, MA, pp. 5–58.
Barto, A. G. and Jordan, M. I.: 1987, Gradient following without backpropagation in layered networks, in Proc. IEEE 1st Ann. Conf. Neural Networks, Vol. II, pp. 629–636.
BekeyG. A.: 1992, Robotics and neural networks, in B.Kosko (ed.), Neural Networks for Signal Processing, Prentice-Hall, Englewood Chiffs, NJ, pp. 161–187.
BekeyG. A. and GoldbergK. Y.: 1993, Neural Networks in Robotics, Kluwer Academic Publishers, Norwell, MA.
BerenjiH. R.: 1992, An architecture for designing fuzzy controllers using neural networks, Int. J. Approximate Reasoning 6(2), 267–292.
ChurchlandP. S. and SejnowskiT. J.: 1992, The Computational Brain, MIT Press, Cambridge, MA.
CohenM. and FlashT.: 1991, Learning impedance parameters for robot control using an associative search network, IEEE Trans. Robot. Automat. 7(3), 382–390.
Cooperstock J. R. and Milios, E.: 1992, Adaptive neural networks for vision-guided position control of a robot arm, in Proc. IEEE Int. Symp. Intelligent Control, pp. 397–403.
Cooperstock, J. R. and Milios, E.: 1993, An efficiently trainable neural network based vision-guided robot arm, in Proc. IEEE Int. Conf. Robot. Automat., pp. 738–743.
CraigJ. J.: 1986, Introduction to Robotics: Mechanics and Control, Addison-Wesley, Reading, MA.
CraigJ. J., HsuP. and SastryS. S.: 1987, Adaptive control of mechanical manipulators, Int. J. Robot. Res. 6, 16–28.
CybenkoG.: 1989, Approximations by superpositions of a sigmoidal function, Math. Control Signal Systems 2, 303–314.
DaunichtW. J.: 1989, Control of manipulators by neural networks, IEE Proc. 136(5), Pt. E, 395–399.
DubowskyS. and DesForgesD. T.: 1979, The application of model-referenced adaptive control to robotic manipulators, Trans. ASME J. Dynamic Systems, Measurement, and Control 101, 193–200.
Elsley, R. K.: 1988, A learning architecture for control based on back-propagation neural networks, in Proc. IEEE Conf. Neural Networks, Vol. II, pp. 587–594.
Franklin, J. A.: 1988, Refinement of robot motor skills through reinforcement learning, in Proc. 27th Conf. Decision and Control, pp. 1096–1101.
Franklin, J.: 1989, Historical perspective and state of the art in connectionist learning control, in Proc. 28th Conf. Decision and Control, pp. 1730–1736.
FuK. S., GonzalezR. C. and LeeC. S. G.: 1987, Robotics: Control, Sensing, Vision, Intelligence, McGraw-Hill, New York.
GrossbergS. and KupersteinM.: 1986, Neural dynamics of adaptive sensory-motor control, Elsevier, Amsterdam. (Reprinted by Pergamon, New York, 1989).
Guez, A. and Ahmad, Z.: 1988, Solution to the inverse kinematic problem in robotics by neural networks, in Proc. IEEE Conf. Neural Networks, Vol. II, pp. 617–624.
GullapalliV.: 1990, A stochastic reinforcement learning algorithm for learning real-valued functions, Neural Networks 3, 671–692.
Gullapalli, V., Grupen, R. A. and Barto, A. G.: 1992, Learning reactive admittance control, in Proc. IEEE Int. Conf. Robot. Automat., pp. 1475–1480.
Gullapalli, V., Barto, A. G. and Grupen, R. A.: 1994, Learning admittance mappings for force-guided assembly, in Proc. IEEE Int. Conf. Robot. Automat., pp. 2633–2638.
Handelman, D. A., Lane, S. H. and Gelfand, J. J.: 1990, Integrating neural networks and knowledge-based systems for intelligent robotic control, IEEE Control Systems Magazine 77–87.
HertzJ., KroghA. and PalmerR. G.: 1991, Introduction to the Theory of Neural Computation, Addison-Wesley, Redwood City, CA.
HoganN.: 1985, Impedance control: An approach to manipulation, Parts I–III, J. Dynamic Systems, Measurement and Control 107, 1–24.
HollerbachJ. M.: 1980, A recursive Lagrangian formulation of manipulator dynamics and a comparative study of dynamics formulation complexity, IEEE Trans. Systems, Man, and Cybernetics SMC-10, 730–736.
Hopfield, J. J.: 1982, Neural networks and physical systems with emergent collective computational abilities, in Proc. Nat. Acad. Sci. USA 79, 2554–2558. (Reprinted in Anderson and Rosenfeld (eds), Neurocomputing: Foundations of Research, MIT Press, Cambridge, MA, 1988).
Hopfield, J. J.: 1984, Neurons with graded responses have collective computational properties like those of two-state neurons, in Proc. Nat. Acad. Sci. USA 81, 3088–3092. (Reprinted in Anderson and Rosenfeld (eds), Neurocomputing: Foundations of Research, MIT Press, Cambridge, MA, 1988.)
HorneB., JamshidiM. and VadieeN.: 1990, Neural networks in robotics: A survey, J. Intelligent and Robot. Systems 3, 51–60.
HornikK., StinchcombeM. and WhiteH.: 1989, Multilayer feedforward networks are universal approximators, Neural Networks 2, 359–366.
HuntK. J., SbarbaroD., ZbikowskiR. and GawthropP. J.: 1992, Neural networks for control systems, a survey, Automatica 28(6), 1083–1112.
Johnson, M. A. and Leahy, M. B.: 1990, Adaptive model-based neural network control, in Proc. IEEE Int. Conf. Robot. Automat., pp. 1704–1709.
JordanM. I.: 1988, Supervised Learning and Systems with Excess Degrees of Freedom, Technical Report 88-27, University of Massachusetts, Amherst, MA.
JordanM. I. and RumelhartD. E.: 1990, Forward Models: Supervised Learning with a Distal Teacher, Center for Cognitive Science Occasional Paper No. 40, Massachusetts Institute of Technology, Cambridge, MA.
JosinG.: 1988, Neural space generalization of a topological transformation, Biol. Cybernetics 59, 283–290.
Josin, G., Charney, D. and White, D.: 1988, Robot control using neural networks, in Proc. IEEE Conf. Neural Networks, Vol. II, pp. 625–631.
KaticD. and VukobratovicM.: 1994, Connectionist approaches to the control of manipulation robots at the executive hierarchical level: An overview, J. Intelligent Robot. Systems 10, 1–36.
Katic, D. and Vukobratovic M.: 1994, Learning impedance control of manipulation robots by feedforward connectionist strucures, in Proc. IEEE Int. Conf. Robotics and Automation, pp. 45–50.
KawatoM., UnoY., IsobeM. and SuzukiR.: 1987, A hierarchical model for voluntary movement and its application to robotics, Proc. IEEE Conf. Neural Networks 4, 573–582.
KawatoM., UnoY., IsobeM. and SuzukiR.: 1988, Hierarchical neural network model for voluntary movement with application to robotics, IEEE Control Systems Magazine 8(2), 8–16.
KirkpatrickS., GelattC. D. and VecchiM. P.: 1983, Optimization by simulated annealing, Science 220, 671–680.
KohonenT.: 1987, Self-Organization and Associative Memory, Springer Series in Information Science, Springer-Verlag, Berlin.
KoivoA. J. and GuoT. H.: 1983, Adaptive linear controller for robotic manipulators, IEEE Trans. Automatic Control AC-28, 162–171.
KoskoB.: 1992, Neural Networks for Signal Processing, Prentice-Hall, Englewood Cliffs, NJ.
KraftL. G. and CampagnaD. P.: 1990, A comparison between CMAC neural network control and two traditional adaptive control systems, IEEE Control Systems Magazine 10(3), 36–43.
Kröse, B. J. A., van der Smagt, P. P. and Groen, F. C. A.: A one-eyed self learning robot manipulator, in G. A Bekey and K. Y. Goldberg (eds), Neural Networks in Robotics, Kluwer Academic Publishers, Norwell, MA, pp. 19–28.
KungS. and HwangJ.: 1989, Neural network architectures for robotic applications, IEEE Trans. Robot. Automat. 5(5), 641–657.
Kuperstein, M.: 1987, Adaptive visual-motor coordination in multijoint robots using parallel architecture, in Proc. IEEE Conf. Robot. Automat., pp. 1595–1602.
KupersteinM. and RubinsteinJ.: 1989, Implementation of an adaptive neural controller for sensory-motor coordination, IEEE Control Systems Magazine 9(3), 25–29.
KupersteinM. and WangJ.: 1990, Neural controller for adaptive movements with unforeseen payloads, IEEE Trans. Neural Networks 1(1), 137–142.
KupersteinM.: 1991, INFANT neural controller for adaptive sensory-motor coordination, Neural Networks 4, 131–145.
LeahyM. B., JohnsonM. A. and RogersS. K.: 1991, Neural network payload estimation for adaptive robot control, IEEE Trans. Neural Networks 2(1), 93–100.
LiangF. and ElMaraghyH. A.: 1994, Direct adaptive neurocontrol of flexible joint robots using localized polynomial networks, Proc. IEEE Int. Conf. Robot. Automat. 3, 3186–3191.
LiuS. and AsadaH.: 1993, Task-level on-line learning using neural networks and its application to deburring robots, Advances Robot., Mechatronics, and Haptic Interfaces DSC-49, 333–338.
LuhJ. Y. S., WalkerM. W. and PaulR. P.: 1980a, Resolved-acceleration control of mechanical manipulators, IEEE Trans. Automatic Control AC-25, 468–474.
LuhJ. Y. S., WalkerM. W. and PaulR. P.: 1980b, On-line computational scheme for mechanical manipulators, Trans. ASME J. Dynamic Systems, Measurement, and Control 102, 69–76.
MartinetzT. M., RitterH. J. and SchultenK. J.: 1990, Three-dimensional neural net for learning visuomotor coordination of a robot arm, IEEE Trans. Neural Networks, 1(1), 131–136.
MartinetzT. M. and SchultenK.: 1991, A ‘Neural-gas’ network learns topologies, in Kohonen et al. (ed.), Proc. Int. Conf. Artificial Neural Networks, Espoo, Finland, Vol. 1, Elsevier, New York, pp. 397–407.
MelB. W.: 1988, MURPHY: A robot that learns by doing, Neural Information Processing Systems, American Institute of Physics, New York, 543–553.
MelB. W.: 1989, Further explorations in visually guided reaching, in D. S.Touretsky (ed.), Advances in Neural Information Processing Systems, Vol. 1, Morgan Kaufmann, Palo Alto, pp. 348–355
MelB. W.: 1990, Connectionist Robot Motion Planning: A Neurally-Inspired Approach to Visually-Guided Reaching, Academic Press, San Diego.
MillerW. T., GlanzF. H. and KraftL. G.: 1987, Application of a general learning algorithm to the control of robotic manipulators, Int. J. Robot. Res. 6(2), 84–98.
MillerW. T.: 1987, Sensor-based control of robotic manipulators using a general learning algorithm, IEEE J. Robot. Automat. RA-3(2), 157–165.
MillerW. T.: 1989, Real-time application of neural networks for sensor-based control of robots with vision, IEEE Trans. Systems, Man, and Cybernetics 19(4), 825–831.
MillerW. T., HewesR. P., GlanzF. H. and KraftL. G.: 1990, Real-time dynamic control of an industrial manipulator using a neural-network-based learning controller, IEEE Trans. Robot. Automat. 6(1), 1–9.
MillerW. T., SuttonR. S. and WerbosP. J.: 1990, Neural Networks for Control, MIT Press, Cambridge, MA.
MiyamotoH., KawatoM., SetoyamaT. and SuzukiR.: 1988, Feedback-error-learning neural network for trajectory control of a robotic manipulator, Neural Networks 1, 251–265.
MukhopadhyayS. and NarendraK. S.: 1993, Disturbance rejection in nonlinear systems using neural networks. IEEE Trans. Neural Networks 4(1), 63–72.
NagchaudhuriA., ThintM. and GargD. P.: 1992, Camera-robot transform for vision guided tracking in a manufacturing workcell, J. Intelligent Robot. Systems: Theory and Applications 5(3), 283–298.
NarendraK. S. and AnnaswamyA. M.: 1989, Stable Adaptive Systems, Prentice-Hall, Englewood Cliffs, NJ.
NarendraK. S. and ParthasarathyK.: 1990, Identification and control of dynamic systems using neural networks, IEEE Trans. Neural Networks 1(1), 4–27.
NewtonR. T. and XuY.: 1993, Real-time implementation of neural network learning control of a flexible space manipulator, Proc. IEEE Int. Conf. Robot. Automat. 1, 135–141.
Nowe, A.: 1994, Fuzzy Reinforcement Learning: An Overview, Technical Report 94-1, Department INFO, Vrije Universiteit Brussel.
Papanikolopoulos, N., Kanade, T. and Khosla, P. K.: 1991a, Vision and control techniques for robotic visual tracking, in Proc. IEEE Int. Conf. Robot. Automat., pp. 857–863.
Papanikolopoulos, N., Khosla, P. K. and Kanade, T.: 1991b, Adaptive robotic visual tracking, in Proc. Amer. Control Conf., pp. 962–967.
PapanikolopoulosN., KhoslaP. K. and KanadeT.: 1993, Visual tracking of a moving target by a camera mounted on a robot: A combination of control and vision, IEEE Trans. Robot. Automat. 9(1), 14–35.
PoggioT. and GirosiF.: 1990, Networks for approximation and learning, Proc. IEEE 7(9), 1481–1497.
PsaltisD., SiderisA. and YamamuraA. A.: 1987, Neural Controllers, Proc. IEEE Int. Conf. on Neural Networks 4, 551–558.
PsaltisD., SiderisA. and YamamuraA. A.: 1988, A multilayered neural network controller, IEEE Control Systems Magazine 8(2), 17–21.
Raibert, M. H.: 1977, Analytical equations vs. table look-up for manipulation: a unifying concept, in Proc. IEEE Conf. Decision and Control, pp. 576–579.
RaibertM. H.: 1978, A model for sensorimotor control and learning, Biol. Cybernetics 29(1), 29–36.
RaibertM. H. and CraigJ. J.: 1981, Hybrid position/force control of manipulators, Trans. ASME J. Dynamic Systems, Measurement, and Control 102, 126–133.
ReadmanM. C.: 1994, Flexible Joint Robots, CRC Press, Boca Raton.
RumelhartD. E., HintonG. E. and WilliamsR. J.: 1986, Learning internal representations by backpropagation errors, Nature 323, 533–536.
Saito, F. and Fukuda, T.: 1994, Learning architecture for real robotic systems — extension of connectionist Q-learning for continuous robot control domain, in Proc. IEEE Int. Conf. Robot. Automat., pp. 27–32.
SaridisG. N. and StephanouH. E.: 1977, A hierarchical approach to the control of a prosthetic arm, IEEE Trans. Systems, Man, and Cybernetics SMC-7(6), 407–420.
SaridisG. N.: 1983, Intelligent robotic control, IEEE Trans. Automatic Control AC-28(5), 547–557.
Saridis, G. N. and Valavanis, K. P.: 1985, Information theoretic approach for knowledge engineering and intelligent machines, in Proc. Amer. Control Conf., pp. 1098–1103.
SchalkoffR. J.: 1992, Pattern Recognition: Statistical, Structural, and Neural Approaches, Wiley, New York.
SerajiH.: 1987, Direct adaptive control of manipulators in Cartesian space, J. Robot. Systems 4, 157–178.
SingerN. C. and SeeringW.: 1990, Preshaping command inputs to reduce system vibration, ASME J. Dynamic Systems, Measurement and Control 112(1), 76–82.
SlotineJ. E. and LiW.: 1988, Adaptive manipulator control: A case study, IEEE Trans. Automatic Control 33(11), 995–1003.
SmagtVan derP. P. and KröseB. J. A.: 1991, A real-time learning neural robot controller, in Kohonen et al. (ed.), Proc. Int. Conf. Artificial Neural Networks, Espoo, Finland, Vol. 1, Elsevier, New York, pp. 351–356.
Sobajic, D. J., Lu, J. and Pao, Y.: 1988, Intelligent control of the intelledex 605T robot manipulator, in Proc. IEEE Conf. Neural Networks, Vol. II, pp. 633–640.
SpongM. W., LewisF. L. and AbdallahC. T. (eds): 1993, Robot Control: Dynamics, Motion Planning, and Analysis, IEEE Press, New York.
Sundareshan, M. K. and Askew, C.: 1994, Neural network-based payload adaptive variable structure control of a flexible manipulator arm, in Proc. IEEE Int. Conf. Neural Networks, pp. 2616–2621.
TzafestasS. G. (ed.): 1993, Applied Control: Current Trends and Modern Methodologies, Marcel Dekker, New York.
TakegakiM. and ArimotoA.: 1981, An adaptive trajectory control of manipulators, Int. J. Control 34, 219–230.
TankD. and HopfieldJ.: 1985, ‘Neural’ computation of decisions in optimization problems, Biol. Cybernetics 52, 141–152.
Torfs, D., Gorinevsky, D. and Goldenberg, A.: 1994, Experiments in feedforward shaping control of direct-drive robot using RBF network, in Proc. IEEE Int. Conf. Neural Networks, pp. 2737–2742.
ValavanisK. P. and SaridisG. N.: 1988, Information theoretic modeling of intelligent robotic systems, IEEE Trans. Systems, Man and Cybernetics 18(6), 852–872.
Valavanis, K. P. and Saridis, G. N.: 1990, A review of intelligent control-based methodologies for modeling and analysis of hierarchically intelligent systems, in Proc. IEEE Int. Symp. Intelligent Control, pp. 15–20.
ValavanisK. P. and SaridisG. N.: 1992, Intelligent Robotic Systems: Theory, Design and Applications, Kluwer Academic Publishers, Boston.
VoglT. P., MangisJ. K., RiglerA. K., ZinkW. T. and AlkonD. L.: 1988, Accelerating the convergence of the backpropagation method, Biol. Cybernetics 59, 257–263.
VukobratovicM. and KaticD.: 1993, Connectionist control structures for high-efficiency learning in robotics, in Applied Control: Current Trend and Modern Methodologies, Marcel Dekker, New York, pp. 705–753.
WalkerM. W. and OrinD. E.: 1982, Efficient dynamic computer simulation of robotic mechanisms, Trans. ASME J. Dynamic Systems, Measurement, and Control 104, 205–211.
WalterJ. A. and SchultenK. J.: 1993, Implementation of self-organizing neural networks for visuo-motor control of an industrial robot, IEEE Trans. Neural Networks 4, 86–95.
Watkins, C. J. C. H.: 1989, Learning With Delayed Rewards, PhD. Thesis, Psychology Dept., Cambridge University.
Weiss, L. E., Sanderson, A. C. and Neuman, C. P.: 1985, Dynamic visual servo control of robots: An adaptive image-based approach, in Proc. IEEE Int. Conf. Robot. Automat., pp. 662–668.
WeissL. E., SandersonA. C. and NeumanC. P.: 1987, Dynamic sensor-based control of robots with visual feedback, IEEE Robot. Automat. RA-3(5), 404–417.
Werbos, P. J.: 1974, Beyond regression: New tools for prediction and analysis in the behavioral sciences, PhD. Thesis, Harvard University, Committee on Applied Mathematics.
WerbosP. J.: 1990, Overview of designs and capabilities, in W. T.Miller et al. (ed), Neural Networks for Control, MIT Press, Cambridge, MA, pp. 59–65.
WerbosP. J.: 1992, Neurocontrol and supervised learning: an overview and evaluation, in D. A.White and D. A.Sofge (eds), Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches, Van Nostrand Reinhold, New York, pp. 65–89.
WhitneyD. E.: 1987, Historical perspective and state of the art in robot force control, Int. Robot. Res. 6, 3–14.
Widrow, B., McCool, J. and Medoff, B.: 1978, Adaptive control by inverse modeling, in 12th Asilomar Conf. Circuits, Systems and Computers, pp. 90–94.
WilsonG. and PawleyG.: 1988, On the stability of the traveling salesman problem of Hopfield and Tank, Biol. Cybernetics 58, 63–70.
Yegerlehner, J. D. and Meckl, P. H.: 1993, Experimental evaluation of neural network controller for robot undergoing large payload changes, in Proc. IEEE Int. Conf. Robot. Automat., pp. 744–749.
Yeung, D. T. and Bekey, G. A.: 1989, Using a context-sensitive learning network for robot arm control, in Proc. IEEE Int. Conf. Robot. Automat., Vol. III, pp. 1441–1447.
ZadehL. A.: 1965, Fuzzy sets, Information and Control 8, 338–353.
ZemanV., PatelR. V. and KhorasaniK.: 1990, A neural net controller for flexible-joint manipulators, Proc. Amer. Control Conf. 3, 3025–3027.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Prabhu, S.M., Garg, D.P. Artificial neural network based robot control: An overview. J Intell Robot Syst 15, 333–365 (1996). https://doi.org/10.1007/BF00437601
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF00437601