Skip to main content
Log in

Integration control and failure detection with application to the robot payload variation problem

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

The problem of integrated control and failure detection of robot payload variations during the execution of a task is investigated by incorporating failure diagnostic methods based on the novel 4-parameter control configuration. The combined controller and failure detection system is a complex design involving nontrivial combination of parameters related to two independent designs: the doubly coprime factorization-based compensator design and failure detection design. The combined design provides a generic setting to study fundamental tradeoffs present in a simultaneous control and diagnostic system. The PUMPA-560 robot arm is used as a case study for the combined design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuo, B.C., Automatic Control Systems, Prentice-Hall (1987).

  2. Spong, M.W. and Vidyasagar, M., Robot Dynamics and Control, Wiley, New York (1989).

    Google Scholar 

  3. Craig, J.J., Adaptive Control of Mechanical Manipulators, Addision-Wesley, New York (1988).

    Google Scholar 

  4. Fu, K.S., Gonzales, R.G., and Lee, C.S.G., Robotics: Control, Sensing, Vision, and Intelligence, McGraw-Hill, New York, 1987.

    Google Scholar 

  5. Callier, F.M. and Desoer, C.A., Multivariable Feedback Systems, Springer Texts in Electrical Engineering, Dowden and Culver (1982).

  6. Tarn, T.J., Bejczy, A.K., and Yun, X., Dynamic equations for the PUMA 560 robot arm, Department of System Sciences and Mathematics, Washington University, Robotics Laboratory Report, SSM-R1-85-02 (1985).

  7. Leahy, M.B. Jr. and Saridis, G.N., Compensation of unmodeled PUMA manipulator dynamics, Part II, Robotics and automation laboratory, Rensselaer Polytechnic Institute, RAL No. 87 (1986).

  8. Nett, C.N., Jacobson, C.A., and Miller, A.T., An integrated approach to controls and Diagnostics: The 4-parameter controller, Proc. 1988 American Control Conference.

  9. Spong, M.W. and Vidyasagar, M., Robust Linear Compensator Design for Nonlinear Robot Control, IEEE J. Robotics Automat. RA-3(4) (1987).

  10. Nett, C.N., Jacobson, C.A., and Balas, M.J., A Connection Between State-Space And Doubly Coprime Fractional Representations, IEEE Trans. Autom. Control AC-29(9) (1984).

  11. Vidyasagar, M., Control System Synthesis, MIT Press, Cambridge, Mass. (1985).

    Google Scholar 

  12. Desoer, C.A. and Vidyasagar, M., Feedback Systems: Input-Output Properties, Academic Press, New York, 1975.

    Google Scholar 

  13. An, C.H., Atkeson, C.G., and Hollerback, J.M., Model-Based Control of a Robot Manipulator, MIT Press, Cambridge, Mass. (1988).

    Google Scholar 

  14. Craig, J.J., Hsu, P., and Sastry, S.S., Adaptive control of mechanical manipulators, Internat. J. Robotics Res. 6(2), Summer 1987.

  15. Leahy, M.B. Jr., Dynamics based control of vertically articulated manipulators with variable payloads, Internat. J. Robotics Res., to appear.

  16. Leahy, M.B. Jr., Dynamics Based Control of Vertically Articulated Manipulators, Proc. IEEE Internat. Conf. Robotics and Automation, April 1988.

  17. Nett, C.N., Algebraic aspects of linear control system stability, IEEE Trans. Automat. Control AC-31(10), October 1986.

  18. Khosla, P.K., Real-time control and identification of direct-drive manipulators, PhD thesis, Dept. of ECE, The Robotics Institute, Carnegie Mellon University (1986).

  19. Ortega, R. and Spong, M.W., Adaptive motion control of rigid robots, Proc. 27th CDC, December 1988.

  20. Khosla, P.K. and Kanade, T., Experimental evaluation of nonlinear feedback and feedforward control schemes for manipulators, Internat. J. Robotics Res. 7(1), February 1988.

  21. An, C.H., Atkeson, C.G., Griffiths, J.D., and Hollerbach, J.M., Experimental evaluation of feedforward and computed torque control, Proc. IEEE Internat. Conf. Robotics and Automation, March–April 1987.

  22. Leahy, M.B. Jr. and Saridis, G.N., Compensation of industrial manipulator dynamics, Internat. J. Robotics Research 8, 1989.

  23. Asada, H. and Hara, K., Load sensitivity analysis and adaptive control of a direct drive arm, Proc. Amer. Control Conf., 1986.

  24. Youcef-Toumi, K. and Kuo, A.T.Y., High speed trajectory control of a direct drive manipulator, Proc. 26th CDC, December 1987.

  25. Craig, J.J., Introduction to Robotics, Mechanics and Control, Addision Wesley, New York (1986).

    Google Scholar 

  26. Middleton, R.H. and Goodwin, G.C., Adaptive computed torque control for rigid link manipulators, Proc. 25th CDC, December 1985.

  27. Hsu, P., Bodson, M., Sastry, S., and Paden, B., Adaptive identification and control of manipulators without using joint acceleration, Proc. IEEE Internat. Conf. Robotics and Automation, 1987.

  28. Li, W. and Slotine, J.-J., Indirect adaptive robot control, Proc. IEEE Internat. Conf. Robotics and Automation, April 1988.

  29. Slotine, J.-J. and Li, W., On the adaptive control of robot manipulators, Internat. J. Robotics Res. 6(3), Fall 1987.

  30. Slotine, J.-J. and Li, W., Adaptive manipulator control: A case study, Proc. IEEE Internat. Conf. Robotics and Automation, 1987.

  31. Niemeyer, G. and Slotine, J.-J., Performance in adaptive manipulator control, Proc. 27th CDC, December 1988.

  32. Cvetkovic, V. and Vukobratovic, M., One robust, dynamic control algorithm for manipulator systems, Internat. J. Robotic Res. 1(4), Winter 1982.

  33. Luo, G.-L and Saridis, G.N., L-Q design of PID controllers for robot arms, IEEE J. Robotics Autom. RA-1 (3), Sept. 1985.

  34. Spong, M.W. and Vidyasagar, M., Robust nonlinear control of robot manipulators, Proc. 24th CDC, December 1985.

  35. Spong, M.W., Thorp, J.S., and Kleinwaks, J.M., The control of robot manipulators with bounded input Part II: Robustness and disturbance rejection, Proc. 24th CDC, December 1984.

  36. Tzes, A. and Yurkovich, S., A sensitivity analysis approach to control of manipulators with unknown load, Proc. IEEE Internat. Conf. Robotics and Automation, 1987.

  37. Friedman, A., Foundations of Modern Analysis, Dover (1982).

  38. Khosla, P.K., Categorization of parameters in the dynamic robot model, IEEE Trans. Robotics Automat. 5(3), June 1989.

  39. Khosla, P.K. and Kanade, T., Real-time implementation and evaluation of computed-torque scheme, IEEE Trans. Robotics Autom. 5(2), April 1989.

  40. Leahy, M.B. Jr., Valavanis, K.P., and Saridis, G.N., Evaluation of dynamic models for PUMA robot control, IEEE Trans. Robotics Automat. 5(2), April 1989.

  41. Horowitz, I., Synthesis of Feedback Systems, Academic Press, New York (1969).

    Google Scholar 

  42. Hindmarsh, A.C., A systematized collection of ODE solvers, IMACS Trans. Sci. Comput. Vol. 1, North-Holland, Amsterdam (1983).

    Google Scholar 

  43. Peebles, P.Z., Communication System Principles, Addison-Wesley, New York (1976).

    Google Scholar 

  44. Harris, F.J., On the use of windows for harmonic analysis with the discrete fourier transform, Proc. IEEE 66(1) (1978).

  45. Gold, B.H., Aspects of trajectory tracking control of a robot arm, Engineering degree thesis, Northeastern University (1989).

  46. Stellais, H.M. and Valavanis, K.P., Fuzzy logic-based formulation of the organizer of an intelligent robotics system, J. Intel. Robotic Systems 4, 1–17 (1991).

    Google Scholar 

  47. Valavanis, K.P. and Saridis, G.N., Probabilistic modeling of intelligent robotic systems, IEEE Trans. Robotics Automat. 7(13) (1991).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valavanis, K.P., Jacobson, C.A. & Gold, B.H. Integration control and failure detection with application to the robot payload variation problem. J Intell Robot Syst 4, 145–173 (1991). https://doi.org/10.1007/BF00440417

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00440417

Key words

Navigation