Skip to main content
Log in

Cooperative grouping processes for edge segmentation

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

An edge segmentation method utilizing cooperative computation and multi-scale analysis is presented. The method is based on directional proximity operators and a two-scale cooperative algorithm. The processes of edge grouping, skeletonization, gap filling and thresholding cooperate by exchanging their input and output data. The segmentation process uses interchangingly two channels differing by a set of three scaling parameters. A coarse-fine strategy is proposed. The method is useful for the extraction of linear edge segments in three-dimensional robot vision systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ballard, D.H. and Brown, C.M., Computer Vision, Prentice-Hall, New York (1982).

    Google Scholar 

  2. Burks, A.W. (ed.), Essays on Cellular Automata, Univ. Illinois Press (1970).

  3. Burns, B.J., Hanson, A.R., and Riseman, E.M., Extracting straight lines, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8(4) 425–455 (1986).

    Google Scholar 

  4. Canny, J., A computational approach to edge detection, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8(6), 679–698 (1986).

    Google Scholar 

  5. Duda, R.O. and Hart, P.E., Pattern Classification and Scene Analysis, Wiley, New York (1973).

    Google Scholar 

  6. Duff, M.J.B. and Watson, D.M., CLIP3: A cellular logic image processor, in E.R. Caianiello (ed.), New Concepts and Technologies in Parallel Information Processing, Noordhoff (1975).

  7. Dunham, J.G., Optimum uniform piecewise linear approximation of planar curves, IEEE Trans. Anal. Mach. Intell. PAMI-8(1), 67–75 (1986).

    Google Scholar 

  8. Fekete, G., Eklundh, J., and Rosenfeld, A., Relaxation: Evaluation and applications, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-3(4), 459–469 (1981).

    Google Scholar 

  9. Fischler, M.A. and Bolles, R.C., Perceptual organization and curve partitioning, IEEE Trans, Pattern Anal. Mach. Intell. PAMI-8(1), 100–105 (1986).

    Google Scholar 

  10. Fountain, T.J., CLIP4: A Progress Report, in M.J.B.Duff and S.Levialdi (eds.), Languages and Architectures for Image Processing, Academic Press, New York (1981).

    Google Scholar 

  11. Glazer, C., Multilevel relaxation in low-level computer vision, in A.Rosenfeld (ed.), Multiresolution Image Processing and Analysis, Springer, New York (1984).

    Google Scholar 

  12. Haralick, R.M., Digital step edges from zero crossing of second directional derivatives, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-6(1), 58–68 (1984).

    Google Scholar 

  13. Horn, B.K.P., Robot Vision, MIT Press (1986).

  14. Hummel, R.A. and Zucker, S.W., On the foundations of relaxation labeling processes, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-5(3), 267–287 (1983).

    Google Scholar 

  15. Koch, M.W. and Kashyap, R.L., Using polygons to recognize and locate partially occluded objects, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-9(4), 483–494 (1983).

    Google Scholar 

  16. Kundu, A. and Mitra, S.K., A new algorithm for image edge extraction using a statistical classifier approach, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-9(4), 569–577 (1987).

    Google Scholar 

  17. Levine, M.D., Vision in Man and Machine, McGraw-Hill, New York (1985).

    Google Scholar 

  18. Lowe, D.G., Perceptual Organization and Visual Recognition, Kluwer, Dordrecht (1985).

    Google Scholar 

  19. Lowe, D.G., Three-dimensional object recognition from single two-dimensional images, TR 202 (RR 62), Courant Institute of Mathematical Sciences, NYU (1986).

  20. Lunscher, W.H.H.J. and Beddoes, M.P., Optimal edge detector design I: Parameter selection and noise effects, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8(2), 164–177 (1986).

    Google Scholar 

  21. Lunscher, W.H.H.J. and Beddoes, M.P., Optimal edge detector design II: Coefficient quantization, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8(2), 164–177 (1986).

    Google Scholar 

  22. Marr, D. and Hildreth, E., Theory of edge detection, Proc. Royal Society (London), ser. B, 207, 187–217 (1980).

    Google Scholar 

  23. Marr, D., Vision, Freeman, San Francisco (1982).

    Google Scholar 

  24. Medioni, G.G. and Nevatia, R., Matching images using linear features, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-6(6), 675–685 (1984).

    Google Scholar 

  25. Mohammed, J.L., Hummel, R.A., and Zucker, S.W., A gradient projection algorithm for relaxation methods, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-5(3), 330–337 (1983).

    Google Scholar 

  26. Moravec, H.P., Locomotion, vision, and intelligence, in M. Brady and R. Paul (eds.), Robotics Research: The First International Symposium, MIT Press (1984).

  27. Nalwa, V.S. and Binford, T.O., On detecting edges, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8 (6), 699–714 (1986).

    Google Scholar 

  28. Nevatia, R., Machine Perception, Prentice-Hall, Englewood Cliffs (1982).

    Google Scholar 

  29. Pavlidis, T., Algorithms for Graphics and Image Processing, Computer Science Press (1982).

  30. Prager, J., Extracting and labeling boundary segments in natural scenes, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-2(1), 16–27 (1980).

    Google Scholar 

  31. Preston, K., Duff, M.J.B., Levialdi, S., Norgren, P.E. and Toriwaki, J.I., Basics of cellular logic with some applications in medical image processing, Proc. IEEE 67(5), 826–856 (1979).

    Google Scholar 

  32. Preston, K., Gray level processing by cellular logic transforms, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-5(1), 55–58, (1983).

    Google Scholar 

  33. Preston, K. and Duff, M.J.B., Modern Cellular Automata: Theory and Applications, Plenum Press, New York (1984).

    Google Scholar 

  34. Rosenfeld, A., Relaxation methods in image processing and analysis, Proc 4th Int. Joint Conf. Pattern Recognition (1978) pp. 181–185.

  35. Shapira, R., The use of objects' faces in interpreting line drawings, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-6(6), 789–794 (1984).

    Google Scholar 

  36. Shapira, R., More about polyhdra — Interpretation through constructions in the image plane, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-7(1), 1–16 (1985).

    Google Scholar 

  37. Sugihara, K., A necessary and sufficient condition for a picture to represent a polyhedral scene, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-6(5), 578–586 (1984).

    Google Scholar 

  38. Surka, S., Extracting linear image features using directional neighborhood operators, Technical Report, Robotics Lab, Dept. ECE, Northeastern University, Boston, 1987–04.

    Google Scholar 

  39. Toffoli, T. and Margolus, N., Cellular Automata Machines: A New Environment for Modeling, MIT Press (1987).

  40. Torre, V. and Poggio, T.A., On edge detection, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8(2), 147–163 (1986).

    Google Scholar 

  41. VonNeumann, J., The general logical theory of automata, in L.A.Jeffries (ed.), Cerebral Mechanisms in Behavior — The Hixon Symposium, Wiley, New York (1951).

    Google Scholar 

  42. Von Neumann, J., Theory of Self-Reproducing Automata, A. Burks (ed.), Univ. Illinois Press (1966).

  43. Waltz, D., Understanding line drawings of scences with shadows, in P.H.Winston (ed.), The Psychology of Computer Vision, McGraw-Hill, New York (1975).

    Google Scholar 

  44. Wolfram, S. (ed.), Theory and Applications of Cellular Automata, World Scientific, Singapore (1986).

    Google Scholar 

  45. Zucker, S.W., Hummel, R.A., and Rosenfeld, A., An application of relaxation labeling to line and curve enhancement, IEEE Trans. Computers C-26(3), 394–403 (1977).

    Google Scholar 

  46. Zucker, S.W. and Parent, P., Multiple-size operators and optimal curve finding, in A.Rosenfeld (ed.), Multiresolution Image Processing and Analysis, Springer, New York (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valavanis, K.P., Surka, S. Cooperative grouping processes for edge segmentation. J Intell Robot Syst 5, 177–192 (1992). https://doi.org/10.1007/BF00444295

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00444295

Key words