Skip to main content

Time-optimal path generation for continuous and quasi-continuous path control of industrial robots

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

For a given continuous path, the problem of designing a time-optimal time-parametrization is considered. First, algorithms are presented which, under rather mild assumptions, yield the exact solution within two computational steps consisting of a forward and a backward computation. Then, the problem of quasi-continuous robot motion is investigated in detail. An algorithm of the same type results, but the computational burden is considerably reduced by making appropriate use of the special structure of the problem. By this, on-line use becomes feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. AthansM. and FalbP.L., Optimal Control, McGraw-Hill, New York, (1966).

    Google Scholar 

  2. BobrowJ.E., DubowskyS., and GibsonJ.S., Time-Optimal Control of Robotic Manipulators Along Specified Paths. Int. J. Rob. Res. 4, 3–17 (1985).

    Google Scholar 

  3. BruhnH. and ErsüE., Grundlagen der analytischen Bewegungsplanung für Roboter, VDI Ber. 598, 461–472 (1986).

    Google Scholar 

  4. BrysonA.E. and HoY.-C., Applied Optimal Control, Hemisphere Publ. Corp., New York, revised printing (1975).

    Google Scholar 

  5. ChandS. and DotyK.L., On-line polynomial trajectories for robot manipulators, Int. J. Rob. Res. 4, 38–48 (1985).

    Google Scholar 

  6. DesoyerK., KopacekP., and TrochI., Industrieroboter und Handhabungsgeräte. Oldenbourg, Munich (1985).

    Google Scholar 

  7. GoldenbergA.A. and LawrenceD.L., End effector path generation, Trans. ASME, J. Dyn. Syst. Meas. Control 108, 158–162 (1986).

    Google Scholar 

  8. Goldenberg, A.A. and Benhabib, B., End effector optimal path generation, IEEE Trans. Syst. Meas. Control, submitted.

  9. JeonH.T. and EslamiM., A minimum-time joint-trajectory planning for industrial manipulator with input torque constraints, 1986 IEEE Conf. Rob. Autom. 1, 559–564 (1986).

    Google Scholar 

  10. KimB.K. and ShinK.G., Minimum-time path planning for robot arms and their dynamics, IEEE Trans. Syst. Meas. Control 15, 213–223 (1985).

    Google Scholar 

  11. KnoblochH.W. and KappelF., Gewoehnliche Differentialgleichungen, Teubner, Stuttgart (1974).

    Google Scholar 

  12. Lee, C.S. and Lee, B.H., Planning of straight line manipulator trajectory in Cartesian space with torque constraints, Proc. 23rd CDC, 1603–1609 (1984).

  13. LuhJ.Y.S. and LinC.S., Optimum path planning for mechanical manipulators. Trans. ASME, J. Dyn. Syst. Meas. Control 102, 142–151 (1981).

    Google Scholar 

  14. Luh, J.Y.S. and Walker, M.W., Minimum-time along the path for a mechanical arm, Proc. 16th CDC, 755–759 (1977).

  15. PaulR., Manipulator Cartesian path control, IEEE Trans. Syst. Meas. Control 9, 702–711 (1979).

    Google Scholar 

  16. PaulR., Robot Manipulators, MIT Press, Cambridge, MA (1977).

    Google Scholar 

  17. Pesch, H.J., Real-time computation of feedback controls for constrained optimal control problems, 1, 2, Rpt. No. 12 (1987) and No. 14 (1987) des Schwerpunktprogrammes der DFG ‘Anwendungsbezogene Optimierung und Steuerung’, to appear in Optimal Control Appl. Methods.

  18. PfeifferF., Optimierungsgesichtspunkte der Bahnplanung, Bahnsteuerung und-regelung. VDI Ber. 598, 415–430 (1986).

    Google Scholar 

  19. PfeifferF. and JohanniR., A concept for manipulator trajectory planning, IEEE J. Rob. Autom. 3, 115–123 (1987).

    Google Scholar 

  20. SchmittD., SoniA.H., SrinivasanV., and NaganathanG., Optimal motion planning of robot manipulators, J. Mechan. Transmiss. Autom. Design 107, 239–244 (1985).

    Google Scholar 

  21. Seeger, G.H. and Paul, R.P., Optimising robot motion along a predefined path, 1985 IEEE Conf. Rob. Autom., 765–770 (1985).

  22. ShinK.G. and McKayN.D., Minimum-time control of robotic manipulators with geometric path constraints, IEEE Trans. Automatic Control 30, 531–541 (1985).

    Google Scholar 

  23. ShinK.G. and McKayN.D., A dynamic programming approach to trajectory planning of robotic manipulators, IEEE Trans. Automatic Control 31, 491–500 (1986).

    Google Scholar 

  24. ShinK.G. and McKayN.D., Minimum-time trajectory planning for industrial robots with general torque constraints, Proc. 1986 IEEE Conf. Rob. Autom. 1, 412–417 (1986).

    Google Scholar 

  25. SinghS. and LeuM.C., Optimal trajectory generation for robotic manipulators using dynamic programming, Trans. ASME, J. Dyn. Syst. Meas. Control 109, 88–96 (1987).

    Google Scholar 

  26. Troch, I., Time-optimal continuous path generation for industrial robots under realistic assumptions, to appear in Robotica.

  27. Troch, I., Time-suboptimal quasi-continuous path generation for industrial robots, submitted.

  28. VukobratovicM. and KircanskiK., A method for optimal synthesis of manipulation robot trajectories, Trans. ASME, J. Dyn. Syst. Meas. Control 104, 188–193 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported by Oesterreichischer Fonds zur Foerderung der wissenschaftlichen Forschung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Troch, I. Time-optimal path generation for continuous and quasi-continuous path control of industrial robots. J Intell Robot Syst 2, 1–28 (1989). https://doi.org/10.1007/BF00450553

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00450553

Key words