Skip to main content

Linear state feedback regulator for rigid link manipulators

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

A new generic representation of the gravity vector in the rigid link robot dynamic model is proposed. We use this representation to design a linear state feedback regulator and show that the closed loop nonlinear system is globally asymptotically stable and exponentially stable in any closed ball. We exploit the fact that the gravity vector is the gradient of the potential function. We also consider robustness of the linear state feedback regulator to parameter uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Troch, I., Kopcek, P., and Desoyer, K.: Simplified models for robot control, in L. L. Basanez, G. Ferrate, and G. Siridis (eds),IFAC Robot Control (Syroco'85), 1985, pp. 31–35.

  2. Neuman, C. and Murry, J.J.: Linearization and sensitivity functions of dynamic robot models,IEEE SMC 14(6) (Nov./Dec. 1984), 805–818.

    Google Scholar 

  3. Lin, C.-F.: Advanced controller design for robot arms,IEEE AC 29(4) (April 1984), 350–353.

    Google Scholar 

  4. Arimoto, S. and Miyazaki, F.: Asymptotic stability of feedback control laws for robot manipulators, in L. L. Basanez, G. Ferrate, and G. Siridis (eds),IFAC Robot Control (Syroco'85), 1985, pp. 221–226.

  5. Lim, K. Y. and Eslami, M.: Adaptive controller designs for robot manipulator system using Lyapunov direct method,IEEE AC 30(12), (Dec. 1985), 1229–1233.

    Google Scholar 

  6. Lim, K. Y. and Eslami, M.: Robust adaptive controller designs for robot manipulator systems,IEEE J. Robotics and Automation 3(1) (1987), 54–66.

    Google Scholar 

  7. Lim, K. Y. and Eslami, M.: Adaptive controller designs for robot manipulator systems yielding reduced cartisian error,IEEE AC 32(2) (Feb. 1987), 184–187.

    Google Scholar 

  8. Hollerbach, J. M.: A recursive Lagrangian formulation of manipulator dynamics and a comparative study of dynamics formulation complixity,IEEE SMC 28 (Nov. 1980), 730–736.

    Google Scholar 

  9. Marino, R. and Nicosia, S.: Hamiltonian-Type Lyapunov functions,IEEE AC 28 (Nov. 1983), 1050–1056.

    Google Scholar 

  10. Fu, K. S., Gonzalez, R. C., and Lee, C. S. G.:Robotics Control Sensing, Vision and Intelligence, McGraw-Hill, New York, 1987.

    Google Scholar 

  11. Khalil, H. K.:Nonlinear Systems, Macmillan, 1992.

  12. Rudin, W.:Principles of Mathematical Analysis, McGraw-Hill, New York, 1976.

    Google Scholar 

  13. Walcott, B. L. and Zak, S. H.: Combined observer-controller synthesis for uncertain dynamical systems with applications,IEEE SMC 18(1) (Jan./Feb. 1988), 88–104.

    Google Scholar 

  14. Denavit, J. and Hartenberg, R. S.: A kinematic notation for lowe pair mechanisms,J. Appl. Mech. 22 (1955), 215–221.

    Google Scholar 

  15. Spong, M. W. and Vidyasagar, M. V.:Robot Dynamics and Control, Wiley, New York, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abouelsoud, A.A., Sultan, M.A. & Hassan, M.F. Linear state feedback regulator for rigid link manipulators. J Intell Robot Syst 15, 291–305 (1996). https://doi.org/10.1007/BF00572264

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00572264

Key words