Skip to main content
Log in

The non-definability notion and first order logic

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

The theorem to the effect that the languageL Δ introduced in [2] is mutually interpretable with the first order language is proved. This yields several model-theoretical results concerningL Δ .

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  1. H. D. Ebbinghaus,Uber eine Pradikatenlogik mit partiell difinierten Pradikaten und Funktionen,Archiv für Mathematische Logik 12 (1969), pp. 39–53.

    Google Scholar 

  2. A. Hoogewijs,On aformalization of the non-definedness notion,Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 25 (1979), pp. 213–217.

    Google Scholar 

  3. A. Hoogewijs,A partial predicat calculus in a two-valued logic,Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 29 (1983), pp. 239–243.

    Google Scholar 

  4. A. Hoogewijs,The non-definedness notion and forcing,Analele stiintificae ale Universitatii “Al I.Cuza” din Iasi 29 (1983), pp. 5–11.

    Google Scholar 

  5. W. Markwald,Pradikatenlogik mit partiell definierten Funktionen,Archiv für Mathematische Logik 14 (1971), pp. 10–23.

    Google Scholar 

  6. W. Markwald,Pradikatenlogik mit partiell definierten Funktionen II,Archiv für Mathematische Logik 16 (1974), pp. 15–22.

    Google Scholar 

  7. H. Wang,The calculus of partial predicates and its extension to set theory I,Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 7 (1961), pp. 283–288.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krynicki, M. The non-definability notion and first order logic. Stud Logica 47, 429–437 (1988). https://doi.org/10.1007/BF00671571

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00671571

Keywords

Navigation