Abstract
We introduce a form of spatiotemporal reasoning that uses homogeneous representations of time and the three dimensions of space. The basis of our approach is Allen's temporal logic on the one hand and general constraint satisfaction algorithms on the other, where we present a new view of constraint reasoning to cope with the affordances of spatiotemporal reasoning as introduced here. As a realization for constraint reasoning, we suggest a massively parallel implementation in form of Boltzmann machines.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
A. Kak, “Spatial reasoning,”Al Magazine vol. 9, no. 2, p. 23, 1988.
J. F. Allen, “Maintaining knowledge about temporal intervals,”Commun. ACM vol. 26, pp. 832–843, 1983.
C. Freksa, “Qualitative spatial reasoning,” inProc. Workshop RAUM, Koblenz, Germany, 1990, pp. 21–36, Universität Koblenz-Landau, Fachberichte Informatik No. 9/90.
H. W. Guesgen, “Four-dimensional reasoning,” inProc. IASTED Int. Conf. Expert Systems: Theory and Applications, Long Beach, CA, 1989, pp. 99–103.
D. Hernandez, “Using comparative relations to represent spatial knowledge,” inProc. Workshop RAUM, Koblenz, Germany, 1990, pp. 69–80, Universität Koblenz-Landau, Fachberichte Informatik No. 9/90.
A. Mukerjee and G. Joe, “A qualitative model for space,” inProc. 9th AAAI, Boston, MA, 1990, pp. 721–727.
A. K. Mackworth, “Consistency in networks of relations,”J. Artif. Intell. vol. 8, pp. 99–118, 1977.
Y. Descotte and J. C. Latombe, “Making compromises among antagonist constraints in a planner,”J. Artif. Intell. vol. 2, pp. 183–217, 1985.
A. Borning, R. Duisberg, B. Freeman-Benson, A. Kramer, and M. Woolf, “Constraint hierarchies,” inProc. 1987 ACM Conf. Objecct-Oriented Programming Systems, Languages and Applications, Orlando, FL, 1987, pp. 48–60.
B. N. Freeman-Benson, J. Maloney, and A. Borning. “An incremental constraint solver,”Commun. ACM vol. 33, pp. 54–63, 1990.
J. Hertzberg, H. W. Guesgen, A. Voss, M. Fidelak, and H. Voss, “Relaxing constraint networks to resolve in-consistencies,” inProc. 12th GWAI, Eringerfeld, Germany, 1988, pp. 61–65.
E. C. Freuder, “Partial constraint satisfaction,” inProc. 11th IJCAI, Detroit, MI, 1989, pp. 278–283.
H. W. Guesgen and J. Hertzberg,A Perspective of Constraint-Based Reasoning. An Introductory Tutorial, Lecture Notes in Artificial Intelligence, vol. 597, Springer: Berlin, 1992.
R. Dechter and J. Pearl, “Network-based heuristics for constraint-satisfaction problems,”J. Artif. Intell. vol. 34, pp. 1–38, 1987.
E. Aarts and J. Korst,Simulated Annealing and Boltz-mann Machines, John Wiley & Sons: Cichester, England, 1989.
M. D. Johnston and H. M. Adorf, “Learning in stochastic neural networks for constraint satisfaction problems,” inProc. NASA Conf. Space Telerobotics, edited by G. Rodriguez and H. Seraij, JPL Publ., Pasadena, CA, 1989, pp. 367–376.
D. Bolz and K. Wittur, “Die Umsetzung deklarativer Beschreibungen von Graphiken durch Simulated Annealing,” inProc. GI-Fachgespräch Graphik und KI, edited by P. Wißkirchen and K. Kansy, Springer: Berlin, Germany, 1990, pp. 68–77.
J. A. Feldman and D. H. Ballard, “Connectionist models and their properties,”J. Cogn. Sci. vol. 6, pp. 201–254, 1982.
Y. Shoham and D. V. McDermott, “Problems in formal temporal reasoning,”J. Artif. Intell. vol. 36, pp. 49–61, 1988.
G. Retz-Schmidt, “Various views on spatial prepositions,”AI Magazine vol. 9, no. 2, pp. 95–105, 1988.
P. J. Hayes, “The naive physics manifesto,” inExpert Systems in the Micro-Electronic Age, edited by D. Michie, Edinburgh University Press: Edinburgh, 1979, pp. 242–270.
E. Tsang and R. Howarth, “Scheduling in both space and time,” inProc. 11th Int. Workshop Expert Syst. Appl., vol. 3, Avignon, France, pp. 361–372, 1991.
T. L. Dean and D. V. McDermott, “Temporal data base management,”J. Artif. Intell. vol. 32, pp. 1–55, 1987.
U. Montanari, “Networks of constraints: Fundamental properties and applications to picture processing,”Information Sci. vol. 7, pp. 95–132, 1974.
R. A. Hummel and S. W. Zucker, “On the foundations of relaxation labeling processes,”IEEE Trans. Pattern Anal. Machine Intell. vol. 5, pp. 267–287, 1983.
U. Montanari and F. Rossi, “Constraint relaxation may be perfect,”J. Artif. Intell. vol. 48, pp. 143–170, 1991.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Guesgen, H.W., Hertzberg, J. A constraint-based approach to spatiotemporal reasoning. Appl Intell 3, 71–90 (1993). https://doi.org/10.1007/BF00871723
Issue Date:
DOI: https://doi.org/10.1007/BF00871723