Skip to main content
Log in

Facets of descent, I

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

An elementary topological approach to Grothendieck's idea of descent is given. While being motivated by the idea of localization which is central in Sheaf Theory, we show how the theory of monads (=triples) provides a direct categorical approach to Descent Theory. Thanks to an important observation by Bénabou and Roubaud and by Beck, the monadic description covers descent also in the abstract context of a bifibred category satisfying the Beck-Chevalley condition. We present the fundamentals of fibrational descent theory without requiring any prior knowledge of fibred categories. The paper contains a number of new topological descent results as well as some new examples in the context of regular categories which demonstrate the subtlety of the descent problem in concrete situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Adámek, H. Herrlich, and G.E. Strecker:Abstract and Concrete Categorieś (Wiley, New York 1990).

    Google Scholar 

  2. M. Barr: Exact categories, in:Exact Categories and Categories of Sheaves, Lecture Notes in Mathematics 236 (Springer, Berlin 1971), pp. 1–120.

    Google Scholar 

  3. M. Barr and C. Wells:Category Theory for Computing Science (Prentice Hall, New York 1990).

    Google Scholar 

  4. J. Bénabou: Fibred categories and the foundations of naive category theory,J. Symbolic Logic 50 (1985), 10–37.

    Google Scholar 

  5. J. Bénabou and J. Roubaud: Monades et descente,C.R. Acad. Sc. 270 (1970), 96–98.

    Google Scholar 

  6. M. Bunge and R. Paré: Stacks and equivalence of indexed categories,Cahiers Topologie Géom. Différentielle Catégoriques 20 (1979), 373–399.

    Google Scholar 

  7. B. Day and G.M. Kelly: On topological quotient maps preserved by pullbacks or products,Proc. Cambridge Phil. Soc. 67 (1970), 553–558.

    Google Scholar 

  8. M. Demazure: Topologies et Faisceaux, Exposé IV, in:Schémas en Groupes I (SGA3), Lecture Notes in Mathematics 151 (Springer, Berlin 1970), pp. 159–250.

    Google Scholar 

  9. P. Freyd and G.M. Kelly: Categories of continuous functors, I,J. Pure Appl. Algebra 2 (1972), 169–191.

    Google Scholar 

  10. J. Giraud:Méthode de la descent, Bull. Soc. Math. France Memoire 2 (1964).

  11. J.W. Gray: Fibred and cofibred categories,Proc. Conf. Categorical Algebra La Jolla 1965 (Springer, Berlin 1966), pp. 21–84.

    Google Scholar 

  12. J.W. Gray: Fragments of the history of Sheaf Theory, in:Applications of Sheaves, Lecture Notes in Mathematics 753 (Springer, Berlin 1979), pp. 1–79.

    Google Scholar 

  13. A. Grothendieck: Technique de descente et théoremes d'existence en géometrie algébrique, I. Géneralités. Descente par morphismes fidélement plats,Séminaire Bourbaki 190 (1959).

  14. A. Grothendieck: Catégories fibrées et descente, Exposé VI, in:Revêtements Etales et Groupe Fondamental (SGA1), Lecture Notes in Mathematics 224 (Springer, Berlin 1971), pp. 145–194.

    Google Scholar 

  15. G. Janelidze:Precategories and Galois Theory, Lecture Notes in Mathematics 1488 (Springer, Berlin 1991), pp. 157–173.

    Google Scholar 

  16. G. Janelidze and W. Tholen:How Algebraic Is the Change-of-Base Functor?, Lecture Notes in Mathematics 1488 (Springer, Berlin 1991), pp. 174–186.

    Google Scholar 

  17. G. Janelidze and W. Tholen: Facets of descent, II (in preparation).

  18. G. Janelidze, D. Schumacher, and R. Street: Galois Theory in variable categories,Appl. Categorical Structures 1 (1993), 103–110.

    Google Scholar 

  19. P.T. Johnstone:Topos Theory (Academic Press, New York 1977).

    Google Scholar 

  20. P.T. Johnstone:Stone Spaces (Cambridge University Press, Cambridge 1982).

    Google Scholar 

  21. A. Joyal and M. Tierney: An extension of the Galois theory of Grothendieck,Mem. Amer. Math. Soc. 51, no. 309 (1984).

    Google Scholar 

  22. A. Kock and I. Moerdijk: Local equivalence relations and their sheaves, preprint (Aarhus University 1991).

  23. S. Mac Lane:Categories for the Working Mathematician (Springer, New York 1971).

    Google Scholar 

  24. S. Mac Lane and I. Moerdijk:Sheaves in Geometry and Logic, A First Introduction to Topos Theory (Springer, Berlin 1992).

    Google Scholar 

  25. S. Mac Lane and R. Paré: Coherence for bicategories and indexed categories,J. Pure Appl. Algebra 37 (1985), 59–80.

    Google Scholar 

  26. M. Makkai:Duality and Definability in First Order Logic, Mem. Amer. Math. Soc. 503 (1993).

  27. I. Moerdijk: Descent theory for toposes,Bull. Soc. Math. Belgique 41 (1989), 373–391.

    Google Scholar 

  28. R. Paré and D. Schumacher: Abstract families and the adjoint functor theorem, in:Indexed Categories and Their Applications, Lecture Notes in Mathematics 661 (Springer, Berlin 1978), pp. 1–125.

    Google Scholar 

  29. D. Pavlović: Predicates and Fibrations, Ph.D. thesis (Rijksuniversiteit Utrecht 1990).

  30. D. Pavlović:Categorical Interpolation: Descent and the Beck-Chevalley Condition without Direct Images, Lecture Notes in Mathematics 1488 (Springer, Berlin 1991), pp. 306–325.

    Google Scholar 

  31. D. Pumplün: Universelle and spezielle Probleme,Math. Ann. 198 (1972), 131–146.

    Google Scholar 

  32. J. Reiterman, M. Sobral, and W. Tholen: Composites of effective descent maps,Cahiers Topologie Géom. Differentielle Catégoriques 34 (1993), 193–207.

    Google Scholar 

  33. J. Reiterman and W. Tholen: Effective descent maps of topological spaces,Topology Appl. (to appear).

  34. M. Sobral and W. Tholen: Effective descent morphisms and effective equivalence relations,Canadian Mathematical Society Conference Proceedings (AMS, Providence 1992), pp. 421–431.

  35. E.H. Spanier:Algebraic Topology (McGraw-Hill, New York 1966).

    Google Scholar 

  36. W. Tholen: Factorizations, localizations and the Orthogonal Subcategory Problem,Math. Nachr. 114 (1983), 63–85.

    Google Scholar 

  37. J.J.C. Vermeulen: Proper maps of locales,J. Pure Appl. Algebra 92 (1994), 79–107.

    Google Scholar 

  38. M.W. Zawadowski:Lax descent theorems for left exact categories, preprint (Warszawa 1992).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Nico Pumplün on the occasion of his sixtieth birthday

The second author acknowledges the hospitality of the Georgian Academy of Sciences and of the University of L'Aquila (Italy). The work presented in this paper was partially carried out during visits at these institutions. Both authors acknowledge partial financial support from the Natural Sciences and Engineering Council of Canada for a visit of the first author at the second author's institution.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janelidze, G., Tholen, W. Facets of descent, I. Appl Categor Struct 2, 245–281 (1994). https://doi.org/10.1007/BF00878100

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00878100

Mathematics Subject Classifications (1991)

Key words

Navigation