Skip to main content
Log in

Fuzzy operator logic and fuzzy resolution

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

There have been only few attempts to extend fuzzy logic to automated theorem proving. In particular, the applicability of the resolution principle to fuzzy logic has been little examined. The approaches that have been suggested in the literature, however, have made some semantic assumptions which resulted in limitations and inflexibilities of the inference mechanism. In this paper we present a new approach to fuzzy logic and reasoning under uncertainty using the resolution principle based on a new operator, the fuzzy operator. We present the fuzzy resolution principle for this logic and show its completeness as an inference rule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ackermann, R.,Introduction to Many Valued Logics, Dover, New York (1967).

    Google Scholar 

  2. Adams, J. B., ‘Probabilistic reasoning and certainty factors’,Math. Bios. 32, 177–186 (1976).

    Google Scholar 

  3. Baldwin, J. F., ‘Fuzzy logic and fuzzy reasoning’, in: E. H. Mamdani and B. R. Gaines (Eds.),Fuzzy Reasoning and its Applications, Academic Press, London (1981), pp. 133–148.

    Google Scholar 

  4. Baldwin, J. F., ‘Support logic programming’, A. Jones (Ed.)Fuzzy Sets, Theory, and Applications, Reidel, Dordrecht (1986).

    Google Scholar 

  5. Baldwin, J. F. and Monk, M., ‘SLOP — A system for support logic programming’,I.T.R.C. Research Report, Univ. of Bristol (1986).

  6. Baldwin, J. F., ‘Evidential support logic programming’,Fuzzy Sets and Systems 24, 1–26 (1987).

    Google Scholar 

  7. Bellmann, R. and Giertz, M. ‘On the analytic formalism of the theory of fuzzy sets’,Inf. Sciences 5, 149–156 (1973).

    Google Scholar 

  8. Bellmann, R. and Zadeh, L. A., ‘Local and fuzzy logics’, in: J. Dunn and G. Epstein (Eds.)Modern Uses of Multiple-Valued Logics D. Reidel, Dordrecht (1977) pp. 103–165.

    Google Scholar 

  9. Bundy, A., ‘Incidence calculus: a mechanism for probabilistic reasoning’,J. Autom. Reasoning 1, 263–283 (1985).

    Google Scholar 

  10. Carnap, R.,Logical Foundations of Probability, Univ. Chicago Press (1950).

  11. Chang, C. and Lee, R.,Symbolic Logic and Mechanical Theorem Proving, Academic Press, New York (1973).

    Google Scholar 

  12. Cohen, P.,Heuristic Reasoning About Uncertainty — An Artificial Intelligence Approach Morgan Kaufmann, Los Altos (1985).

    Google Scholar 

  13. Dubois, D. and Prade, H., ‘A class of fuzzy measures based on triangular norms’,Int. J. General Systems, 8(1) (1982).

  14. Dubois, D. and Prade, H., ‘Criteria aggregation and ranking of alternatives in the framework of fuzzy set theory’ in: H. Zimmerman, L. A. Zadeh and B. R. Gaines (Eds.).Stud. Management Sci. 20, 209–240 (1984).

    Google Scholar 

  15. Duda, R., Hart, P. and Nilson, N., ‘Subjective bayesian methods for rule-based inference systems’, Tech. Note 124, SRI, Menlo Park (1976).

  16. Duda, R., Gachnig, J. and Hart, P., ‘Model design in the prospector consultant system for mineral exploration’, in: D. Michie (Ed.)Expert Systems in the Micro-Electronic Age Univ. Press, Edinburgh, pp. 153–167 (1981).

    Google Scholar 

  17. de Finetti, B.,Theory of Probbility New York, Wiley (1974).

    Google Scholar 

  18. Giles, R., ‘A Nonclassical Logic for Physics’,Studia Logic 33, 313–327 (1974).

    Google Scholar 

  19. Giles, R., ‘Łukasiewicz logic and fuzzy set theory’,Intl. J. Man-Machine Stud. 8, 313–327 (1976).

    Google Scholar 

  20. Ishizuka, M., Fu, K. and Yao, J., ‘Rule-based damage assessment system for existing structures’,Solid Mechanics Archive 8, 99–118 (1983).

    Google Scholar 

  21. Ishizuka, M., ‘Inference methods based on extended Dempster and Shafer's theory for problems with uncertainty/fuzziness’,New Generation Computing 1, 159–186 (1983).

    Google Scholar 

  22. Ishizuke, M. and Kanai, N., ‘Prolog-ELF incorporating fuzzy logic’Proc. Ninth IJCAI, pp. 701–703 (1985).

  23. Lindley, D. V., ‘Scoring rules and the inevitability of probability’,Int. Statistics Rev.,50, 1–16 (1982).

    Google Scholar 

  24. Liu, X. H., Tsai, J. P. and Weigert, Th., ‘Λ-resolution and the interpretation of Λ-implication in fuzzy operator logic’,Inf. Sci. 56, 259–278 (1991).

    Google Scholar 

  25. Łukasiewicz, J., ‘Many-valued systems of propositional logic’,Polish Logic, Oxford U.P., Oxford (1967).

    Google Scholar 

  26. Lee, R., ‘Fuzzy logic and the resolution principle’,JACM 19, 109–119 (1972).

    Google Scholar 

  27. Mukaidono, M., ‘Fuzzy Inference of resolution style’, in R. Yager (Ed.),Fuzzy Set and Possibility Theory, Pergamon, New York, pp. 224–231 (1982).

    Google Scholar 

  28. Rosser, J. and Turquette, A.,Many Valued Logic, North-Holland, Amsterdam (1952).

    Google Scholar 

  29. Savage, L. J.,The Foundations of Statistics, New York, Wiley (1954).

    Google Scholar 

  30. Shafer, G.,A Mathematical Theory of Evidence, Princeton Univ. Press (1976).

  31. Shen, Z., Ding, L. and Mukaidono, M., ‘A theoretical framework of fuzzy prolog machine’, in: M. Gupta and T. Yamakawa (Eds.)Fuzzy Computing, North-Holland, Amsterdam (1988) pp. 89–100.

    Google Scholar 

  32. Shortliffe, E. H. and Buchanan, B. G., ‘A model of inexact reasoning in medicine’,Math. Biosci. 23, 351–379 (1975).

    Google Scholar 

  33. Shortliffe, E.,Computer-Based Medical Consultation: MYCIN, American Elsevier, New York (1976).

    Google Scholar 

  34. Weiss, S., Kulikowski, C., Amarel, S. and Safir, A., ‘A model-based method for computer-aided medical decision-making’,AI 11, 145–172 (1978).

    Google Scholar 

  35. Yager, R., Ovchinnikov, S., Tong, R. and Nguyen, H.,Fuzzy Sets and Applications, Wiley, New York (1978).

    Google Scholar 

  36. Zadeh, L. A., ‘Fuzzy sets’,Inform. Contr. 8, 94–102 (1965).

    Google Scholar 

  37. Zadeh, L. A., ‘Fuzzy logic and approximate reasoning’,Synthese 30, 407–428 (1975).

    Google Scholar 

  38. Zadeh, L. A., ‘The concept of linguistic variables and its application in approximate reasoning’,Inf. Sci. 8 199–249, 301–357 (1975),Inf. Sci. 9, 43–80 (1976).

    Google Scholar 

  39. Zadeh, L. A., ‘Is probability theory sufficient for dealing with uncertainty in AI?’ in: L. Kanal and J. Lemmer (Eds.)Uncertainty in Artificial Intelligence, North-Holland, Amsterdam, pp. 103–116 (1986).

    Google Scholar 

  40. Zadeh, L. A., ‘Commonsense and fuzzy logic’, in: N. Cercone and G. McCalla (Eds.)The Knowledge Frontier, Springer, New York, pp. 103–136 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weigert, T.J., Tsai, JP. & Liu, X. Fuzzy operator logic and fuzzy resolution. J Autom Reasoning 10, 59–78 (1993). https://doi.org/10.1007/BF00881864

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00881864

Key words

Navigation