Abstract
Given a finite setE ⊂R n, the problem is to find clusters (or subsets of “similar” points inE) and at the same time to find the most typical elements of this set. An original mathematical formulation is given to the problem. The proposed algorithm operates on groups of points, called “samplings” (“samplings” may be called “multiple centers” or “cores”); these “samplings” adapt and evolve into interesting clusters. Compared with other clustering algorithms, this algorithm requires less machine time and storage. We provide some propositions about nonprobabilistic convergence and a sufficient condition which ensures the decrease of the criterion. Some computational experiments are presented.
Similar content being viewed by others
References
Geoffrey H. Ball and David J. Hall, “ISODATA—a novel method of data analysis and pattern classification,” Technical Report, SRI Project 5533, Stanford Research Institute, Menlo Park, Calif., 1965.
J. P. Benzecri, “Leçons sur la reconnaissance des formes,” Laboratoire de Statistique de la Faculté des Sciences de Paris au Quai St Bernard, 1969.
R. E. Bonner, “On some clustering techniques,”IBM J. Res. Devel. (1964).
E. Diday, “Une nouvelle méthode en classification automatique et reconnaissance des formes: la méthode des nuées dynamiques,”Revue de Statistique appliquée XIX(2) (1970).
E. Diday, “La méthode des nuées dynamiques et la reconnaissance des formes,”Cahiers de l'IRIA (1970). (Available from IRIA, Rocquencourt, France).
E. Diday, “Optimisation en classification automatique nonhiérarchique,” 1971. (Avalaible from IRIA, Rocquencourt, France).
L. Fisher and J. W. Van Ness, “Admissible clustering procedures,”Biometrika 58(1):91 (1971).
R. A. Fisher, “The use of multiple measurements in taxonomie problems,”Ann. Eugen. 7:179 (1936).
I. Gitman, Ph.D. Thesis, Dept. of Electrical Engineering, McGill Univ., Montreal, Canada, 1970.
D. R. Hill, “Mechanized information storage, retrieval and dissemination,” inProc. FID/IFIP Joint Conf. Rome, 1967.
S. C. Johnson, “Hierarchical clustering schemes,”Psychometrica 32:241–45 (1967).
H. Lerman,Les bases de la classification automatique (Gauthiers-Villars, 1970).
James MacQueen, “Some methods for classification and analysis of multivariate observations,” in5th Berkeley Symp. on Mathematics, Statistics and Probability., Vol. 1, No. 1, pp. 281–297.
G. Nagy, “State of the art in pattern recognition,”Proc. IEEE 56:836–882 (1968).
M. Roux, “Un algorithme pour construire une hiérarchic particulière,” Thése de 3e cycle, Laboratoire de Statistique Mathématique, Faculté des Sciences de Paris.
E. H. Ruspini, “Numerical Method for Fuzzy Clustering,”Information Sciences 2:319–350 (1970).
George S. Sebestyen,Decision-Making Process in Pattern Recognition (Macmillan, New York, 1962).
George S. Sebestyen, “Automatic off-line multivariate data analysis,” inProc. Fall Joint Computer Conf. 1966, pp. 685–694.
R. Sokal and P. H. A. Sneath, “Numerical Taxonomy” (Freeman, San Francisco, 1963).
S. Watanabé, “A unified view of clustering algorithms,” IFIP congress 71, Booklet TA-2, pp. 64, 69 (1971).
L. A. Zadeh, “Fuzzy sets,”Information and Control 8:338–353 (1965).
C. T. Zahn, “Graph-theoretical methods for detecting and describing gestralt clusters,”IEEE Trans. Computers C-20(1) (1971).
E. M. L. Beale, “Euclidean cluster analysis,”Bull. ISI (London) 43(2):92–94 (1969).
E. W. Forgey, “Cluster analysis of multivariate data,” AAAS Biometric Society (WNAR), Riverside, Calif., 1965.
R. C. Jancey, “Multidimensional group analysis,”Aust. J. Bot. 14:127 (1966).
R. W. Kennard and L. A. Stone, “Computer-aided design of experiments,”Techno-metrica 11:137–148 (1969).
R. L. Thorndike, “Who belongs in the family?”Psychometrika 18:267–276 (1953).
D. Wishart, “Some problems in the theory and application of the methods of numerical taxonomy,” Ph.D. Thesis, Univ. of St. Andrews, 1971.
E. Diday, “La méthode des nuées dynamiques séquentialisée, 1972. (Available at IRIA, Rocquencourt, France).
P. C. Mahalanobis, 1936.
Cormack, “A review of classification,”J. Roy. Statist. Soc. (Serie A) 134 (Part 3) (1971).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Diday, E. The dynamic clusters method in nonhierarchical clustering. International Journal of Computer and Information Sciences 2, 61–88 (1973). https://doi.org/10.1007/BF00987153
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF00987153