Skip to main content
Log in

The dynamic clusters method in nonhierarchical clustering

  • Published:
International Journal of Computer & Information Sciences Aims and scope Submit manuscript

Abstract

Given a finite setER n, the problem is to find clusters (or subsets of “similar” points inE) and at the same time to find the most typical elements of this set. An original mathematical formulation is given to the problem. The proposed algorithm operates on groups of points, called “samplings” (“samplings” may be called “multiple centers” or “cores”); these “samplings” adapt and evolve into interesting clusters. Compared with other clustering algorithms, this algorithm requires less machine time and storage. We provide some propositions about nonprobabilistic convergence and a sufficient condition which ensures the decrease of the criterion. Some computational experiments are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geoffrey H. Ball and David J. Hall, “ISODATA—a novel method of data analysis and pattern classification,” Technical Report, SRI Project 5533, Stanford Research Institute, Menlo Park, Calif., 1965.

    Google Scholar 

  2. J. P. Benzecri, “Leçons sur la reconnaissance des formes,” Laboratoire de Statistique de la Faculté des Sciences de Paris au Quai St Bernard, 1969.

  3. R. E. Bonner, “On some clustering techniques,”IBM J. Res. Devel. (1964).

  4. E. Diday, “Une nouvelle méthode en classification automatique et reconnaissance des formes: la méthode des nuées dynamiques,”Revue de Statistique appliquée XIX(2) (1970).

  5. E. Diday, “La méthode des nuées dynamiques et la reconnaissance des formes,”Cahiers de l'IRIA (1970). (Available from IRIA, Rocquencourt, France).

    Google Scholar 

  6. E. Diday, “Optimisation en classification automatique nonhiérarchique,” 1971. (Avalaible from IRIA, Rocquencourt, France).

    Google Scholar 

  7. L. Fisher and J. W. Van Ness, “Admissible clustering procedures,”Biometrika 58(1):91 (1971).

    Google Scholar 

  8. R. A. Fisher, “The use of multiple measurements in taxonomie problems,”Ann. Eugen. 7:179 (1936).

    Google Scholar 

  9. I. Gitman, Ph.D. Thesis, Dept. of Electrical Engineering, McGill Univ., Montreal, Canada, 1970.

    Google Scholar 

  10. D. R. Hill, “Mechanized information storage, retrieval and dissemination,” inProc. FID/IFIP Joint Conf. Rome, 1967.

  11. S. C. Johnson, “Hierarchical clustering schemes,”Psychometrica 32:241–45 (1967).

    Google Scholar 

  12. H. Lerman,Les bases de la classification automatique (Gauthiers-Villars, 1970).

  13. James MacQueen, “Some methods for classification and analysis of multivariate observations,” in5th Berkeley Symp. on Mathematics, Statistics and Probability., Vol. 1, No. 1, pp. 281–297.

  14. G. Nagy, “State of the art in pattern recognition,”Proc. IEEE 56:836–882 (1968).

    Google Scholar 

  15. M. Roux, “Un algorithme pour construire une hiérarchic particulière,” Thése de 3e cycle, Laboratoire de Statistique Mathématique, Faculté des Sciences de Paris.

  16. E. H. Ruspini, “Numerical Method for Fuzzy Clustering,”Information Sciences 2:319–350 (1970).

    Google Scholar 

  17. George S. Sebestyen,Decision-Making Process in Pattern Recognition (Macmillan, New York, 1962).

    Google Scholar 

  18. George S. Sebestyen, “Automatic off-line multivariate data analysis,” inProc. Fall Joint Computer Conf. 1966, pp. 685–694.

  19. R. Sokal and P. H. A. Sneath, “Numerical Taxonomy” (Freeman, San Francisco, 1963).

    Google Scholar 

  20. S. Watanabé, “A unified view of clustering algorithms,” IFIP congress 71, Booklet TA-2, pp. 64, 69 (1971).

  21. L. A. Zadeh, “Fuzzy sets,”Information and Control 8:338–353 (1965).

    Google Scholar 

  22. C. T. Zahn, “Graph-theoretical methods for detecting and describing gestralt clusters,”IEEE Trans. Computers C-20(1) (1971).

  23. E. M. L. Beale, “Euclidean cluster analysis,”Bull. ISI (London) 43(2):92–94 (1969).

    Google Scholar 

  24. E. W. Forgey, “Cluster analysis of multivariate data,” AAAS Biometric Society (WNAR), Riverside, Calif., 1965.

    Google Scholar 

  25. R. C. Jancey, “Multidimensional group analysis,”Aust. J. Bot. 14:127 (1966).

    Google Scholar 

  26. R. W. Kennard and L. A. Stone, “Computer-aided design of experiments,”Techno-metrica 11:137–148 (1969).

    Google Scholar 

  27. R. L. Thorndike, “Who belongs in the family?”Psychometrika 18:267–276 (1953).

    Google Scholar 

  28. D. Wishart, “Some problems in the theory and application of the methods of numerical taxonomy,” Ph.D. Thesis, Univ. of St. Andrews, 1971.

  29. E. Diday, “La méthode des nuées dynamiques séquentialisée, 1972. (Available at IRIA, Rocquencourt, France).

    Google Scholar 

  30. P. C. Mahalanobis, 1936.

  31. Cormack, “A review of classification,”J. Roy. Statist. Soc. (Serie A) 134 (Part 3) (1971).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diday, E. The dynamic clusters method in nonhierarchical clustering. International Journal of Computer and Information Sciences 2, 61–88 (1973). https://doi.org/10.1007/BF00987153

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00987153

Keywords