Skip to main content

Advertisement

Log in

An auxiliary theorem for stability analysis in the presence of interval-valued parameters

  • Communication Briefs
  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

A theorem which helps to determine the boundary of the image of an interval inR n under a differentiable mapping,F:R nC, is expounded. Examples illustrating the application of the theorem are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. T.C. Kao and G.D. Knott, “An Efficient and Numerically Correct Algorithm for the 2D Convex Hull Problem,”BIT, 30, 1990, pp. 311–331.

    Google Scholar 

  2. L. Zadeh and C.A. Desoer,Linear System Theory, New York: McGraw-Hill, 1963.

    Google Scholar 

  3. H. Chapellat and H. Keel, Robustness Properties of Multilinear Interval Systems,” inRobust Dynamic Systems with Parameter Uncertainties, (M. Mansour, S. Balemi, W. Truöl, (eds.)), Basel: Birkhäuser-Verlag, 1992, pp. 73–80.

    Google Scholar 

  4. B.D.O. Anderson, F.J. Kraus, M. Mansour, and S. Dasgupta, “Easily Testable Sufficient Conditions for the Robust Stability of Systems with Multiaffine Parameter Dependence,” inRobust Dynamic Systems with Parameter Uncertainties, (M. Mansour, S. Balemi, and W. Truöl, (eds.)), Basel: Birkhäuser-Verlag, 1992, pp. 18–92.

    Google Scholar 

  5. B.T. Polyak, “Robustness Properties for Multilinear Perturbations,” inRobust Dynamic Systems with Parameter Uncertainties, (M. Mansour, S. Balemi, W. Truöl, (eds.)), Basel: Birkhäuser-Verlag, 1992, pp. 93–104.

    Google Scholar 

  6. N.-K. Tsing and A. Tits, “On the Multiaffine Image of a Cube, inRobust Dynamic Systems with Parameter Uncertainties, (M. Mansour, S. Balemi, W. Truöl, (eds.)), Basel: Birkhäuser-Verlag, 1992, pp. 105–110.

    Google Scholar 

  7. G. Fruchter, U. Srebro, and E. Zeheb, “On Several Variable Zero Sets and Application to MIMO Robust Feedback Stabilization,”IEEE Trans. Circuits Systems, vol. 34, 1987, pp. 1208–1220.

    Google Scholar 

  8. G. Fruchter, U. Srebro, and E. Zeheb, “Conditions on the Boundary of the Zero Set and Application to Stabilization of Systems with Uncertainty,”J. Math. Anal. Appl., vol. 161, 1991, pp. 148–175.

    Google Scholar 

  9. G. Fruchter, U. Srebro, and E. Zeheb, “On Possibilities of Utilizing Various Conditions to Determine a Zero Set,”J. Math. Anal. Appl., vol. 161, 1991, pp. 361–366.

    Google Scholar 

  10. E. Zeheb, “Necessary and Sufficient Conditions for Robust Stability of a Continuous System—The Continuous Dependency Case Illustrated via Multilinear Dependency,”IEEE Trans. Circuits Systems, vol. 37, 1990, pp. 47–53.

    Google Scholar 

  11. J. Kogan and A. Leizarowtiz, “Frequency Domain Criterion for Robust Stability of Interval Time-Systems,” Research report 93-09, University of Maryland, Baltimore, 1993.

    Google Scholar 

  12. J. Kogan,Robust Stability and Convexity: An Introduction, University of Maryland, Baltimore, 1993.

    Google Scholar 

  13. R.T. Rockafellar,Convex Analysis, Princeton, NJ: Princeton University Press, 1970.

    Google Scholar 

  14. F.G. Boese, “Comments on Frequency-Domain Conditions for the Robust Stability of Linear and Nonlinear Dynamical Systems,”IEEE Trans. Circuits Systems, vol. 40, 1993, pp. 291–294.

    Google Scholar 

  15. F.G. Boese, “On the Stability of Interval Families of Characteristic Functions Depending Linearly on Parameters,” preprint, Munich, 1991;J. Math. Anal. Appl., 1991, (to appear).

  16. F.G. Boese, “On the Stability of Interval Families of Characteristic Functions Depending Linearly on Parameter,”Z. Angew. Math. Mech., vol. 73, 1993, pp. T179-T182.

    Google Scholar 

  17. F.G. Boese, “Stability in a Special Class of Retarded Difference-Differential Equations with Interval-Valued Parameters,”Z. Angew. Math. Mech., vol. 72, 1992, pp. T84-T87.

    Google Scholar 

  18. F.G. Boese, “A New Representation of a Stability Result of N.D. Hayes,”Z. Angew. Math. Mech., vol. 73, 1993, pp. 117–120.

    Google Scholar 

  19. E. Zaron, “The Delay Differential Equationx'(t)=−ax(t)+bx(t−τ1)+cx(t−τ2),” Technical Report, Harvey Mudd College, Claremont, CA, 1987.

    Google Scholar 

  20. J.K. Hale and W. Huang, “Global Geometry of the Stable Regions for Two Delay Differential Equations,”J. Math. Anal. Appl., vol. 178, 1993, pp. 344–362.

    Google Scholar 

  21. J.M. Mahaffy, P.J. Zak and K.M. Joiner, “A Geometrical Analysis of Stability Regions for a Linear Differential Equation with Two Delays,” preprint, 1992.

  22. F.G. Boese, “Complicated Stability Charts for Difference-Differential Equations Constant Coefficients and One Constant Delay,”Z. Angew. Math. Mech., vol. 71, 1991, T147-T150.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boese, F.G. An auxiliary theorem for stability analysis in the presence of interval-valued parameters. Multidim Syst Sign Process 5, 419–440 (1994). https://doi.org/10.1007/BF00989281

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00989281

Key Words