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Abstract. In view of a great proliferation of machine learning methods and paradigms, there is a need for a 
general conceptual framework that would explain their interrelationships and provide a basis for their integration 
into multistrategy learning systems. This article presents initial results on the Inferential Theory of Learning that 
aims at developing such a framework, with the primary emphasis on explaining logical capabilities of learning 
systems, i.e., their competence. The theory views learning as a goal-oriented process of modifying the learner's 
knowledge by exploring the learner's experience. Such a process is described as a search through a knowledge 
space, conducted by applying knowledge transformation operators, called knowledge transmutations. Transmuta- 
tions can be performed using any type of inference--deduction, induction, or analogy. Several fundamental pairs 
of transmutations are presented in a novel and very general way. These include generalization and specialization, 
explanation and prediction, abstraction and concretion, and similization and dissimilization. Generalization and 
specialization transmutations change the reference set of a description (the set of entities being described). Explana- 
tions and predictions derive additional knowledge about the reference set (explanatory or predictive). Abstractions 
and concretions change the level of detail in describing a reference set. Similizations and dissimilizations hypothesize 
knowledge about a reference set based on its similarity or dissimilarity with another reference set. The theory 
provides a basis for multistrategy task-adaptive learning (MTL), which is outlined and illustrated by an example. 
MTL dynamically adapts strategies to the learning task, defined by the input information, the learner's background 
knowledge, and the learning goal. It aims at synergistically integrating a wide range of inferential learning strategies, 
such as empirical and constructive inductive generalization, deductive generalization, abductive derivation, abstrac- 
tion, similization, and others. 

Keywords. Learning theory, multistrategy learning, inference, classification of inference, deduction, induction, 
abduction, generalization, abstraction, analogy, transmutation. 

For every belief  comes either through syllogism or from induction. 
Aristot le ,  Pr ior  Analyt ics ,  Book  II, Chapter  23 (p. 90) 

ca 330 BC. 

1. I n t r o d u c t i o n  

Most  research in machine learning has been oriented toward the development  of  monostrategy 
methods  that employ one  type of  inference and a single computat ional  mechan ism.  Such 

methods  include,  for example,  induct ive learning o f  dec is ion  rules or  decis ion trees, 

explanat ion-based general izat ion,  empi r ica l  discovery,  neural  net  learning f rom examples,  

genetic  a lgori thm-based learning,  conceptual  clustering, and others. The  research progress 

on these and related topics has been  repor ted  by many  authors, among  them Lai rd  (1988), 

Touretzky, Hinton,  and Sejnowski  (1988), Goldberg  (1989), Schafer  (1989), Segre  (1989), 
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Rivest, Haussler, and Warmuth (1989), Fulk and Case (1990), Porter and Mooney (1990), 
Kodratoff and Michalski (1990), Birnbaum and Collins (1991), Warmuth and Valiant (1991), 
and Sleeman and Edwards (1992). 

With the growing understanding of capabilities and limitations of monostrategy methods, 
there has been an increasing interest in multistrategy learning systems that employ two 
or more inference types and/or computational mechanisms. Multistrategy systems can have 
potentially for much greater competence, that is, the ability to solve a much wider range 
of learning problems than monostrategy systems, because they take advantage of the com- 
plementarity of individual learning strategies. On the other hand, they are also potentially 
significantly more complex, and thus their implementation presents a much greater 
challenge. Therefore, a decision on their application to a given range of problems should 
reflect the above trade-off. Since human learning is clearly multistrategy, research on 
multistrategy systems is of significant relevance to understanding human learning, and thus 
has a great importance regardless of the practical applications of the work. 

Among early well-known multistrategy systems (sometimes called "integrated learning 
systems") are UNIMEM (Lebowitz, 1986), Odysseus (Wilkins, Clancey, & Buchanan, 1986), 
Prodigy (Minton et al., 1987) DISCIPLE (Kodratoff & Tecuci, 1987), Gemini (Danyluk, 
1987, 1989, 1993), OCCAM (Pazzani, 1988), IOE (Dietterich & Flann, 1988), and KBL 
(Whitehall, 1990). Most of these systems are concerned with integrating symbolic empirical 
induction with explanation-based learning. Some, like DISCIPLE, also include a simple 
method for analogical learning. The integration of the strategies is often done in a predefined, 
problem-independent way, and without clear theoretical justification. Some recent 
multistrategy systems are described by De Raedt and Bruynooghe (1993) and Mooney and 
Ourston (1993). 

An open and challenging problem is how to integrate a whole spectrum of learning strat- 
egies in a problem-dependent way, and on the basis of sound and general theoretical foun- 
dations. By a problem-dependent integration we mean an integration in which a learning 
strategy, or a combination of them, is automatically adapted to different learning situations. 

The articles in this special issue represent novel and diverse efforts in this general direc- 
tion. The present article investigates principles characterizing diverse inferential learning 
strategies and proposes a general conceptual framework for developing multistrategy systems. 
Its central part is devoted to Inferential Theory of Learning (ITL), which analyzes learning 
processes in terms of generic operators for knowledge transformation, called knowledge 
transmutations or knowledge transforms. 

A knowledge transmutation is a conceptually simple, high-level knowledge transforma- 
tion pattern that derives a piece of knowledge from a given input and background knowledge. 
A transmutation is an operator on knowledge that can employ any type of inference. Among 
major research topics studied in the theory are an analysis of the properties of different 
knowledge transmutations, their interrelationships, and their role in different learning algo- 
rithms, methods, and paradigms. 

The main objective of the theory is to characterize the logical capabilities of learning 
methods and processes, that is, their competence. To this end, the theory addresses such 
questions as what types of knowledge transformation occur in learning processes; what is 
the "truth" status of knowledge generated by them; what knowledge transmutations occur 
in different types of learning; how prior knowledge is used; what types of logical relationships 
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exist between the learned knowledge, the input information, and the learner's prior 
knowledge; how learning goals and their structure influence learning processes; how learn- 
ing processes can be classified and evaluated from the logical viewpoint; what is the validity 
of the learned knowledge; etc. The theory stresses the use of multitype inferences in learn- 
ing processes, the role of the learner's prior knowledge, and the importance of learning 
goals. Although the primary goal is not to develop a cognitive learning theory, the concep- 
tual framework presented does try to formally capture the intuitive perceptions of different 
forms of human inference and learning, and suggests solutions that could be used as a basis 
for developing cognitive models. A number of ideas presented here stem from research 
on the core theory of human plausible inference (Collins & Michalski, 1989). 

The above goals distinguish the Inferential Theory of Learning (ITL) from the Computa- 
tional Learning Theory (COLT), which focuses on the computational complexity and con- 
vergence of learning algorithms, particularly those for empirical inductive learning. COLT 
has not yet been much concerned with multistrategy learning, the role of the learner's prior 
knowledge, or the learning goals (e.g., Fulk & Chase; 1990; Warmuth & Valiant, 1991). 
The above should not be taken to mean that the issues studied in COLT are unimportant, 
but only that they are different. A "unified" theory of learning should take into considera- 
tion both competence and complexity of learning processes. 

This article outlines basic ideas of ITL and presents a novel and more general view of 
several fundamental knowledge transmutations, such as generalization, abduction, abstrac- 
tion, similization, and their opposites. The last section describes briefly an application 
of the theory to the development of a methodology for multistrategy task-adaptive learning. 
Many ideas are presented in prefatory and illustrative fashion, with the emphasis on develop- 
ing a general perspective of the whole subject. Various details and a better formalization 
of various concepts await further research. To make the article easily accessible to the AI 
and Cognitive Science communities, as well as to readers who are not regularly using predi- 
cate logic, expressions in predicate logic are usually accompanied by a natural language 
interpretation. The presented work is a significant extension or refinement of ideas described 
in earlier publications (Michalski, 1983, 1990a,b, 1991). 

2. Basic tenets of the inferential theory of learning 

Learning has been traditionally characterized as an improvement of a system's behavior 
or knowledge due to its experience. While this view is appealing due to its simplicity, it 
does not provide many clues about how to actually implement a learning system. To build 
a learning system, one needs to understand, in computation terms, what types of behavior 
or knowledge changes occur in learning, and how they are accomplished in response to 
different types of experience. (Here "experience" means the totality of information generated 
in the course of performing some actions, not a physical process.) 

To provide answers to such questions, the Inferential Theory of Learning assumes that 
learning is a goal-guided process of modifying the learner's knowledge by exploring the 
learner's experience. Such a process can be viewed as a search through a knowledge space, 
defined by the knowledge representation used. The search can employ any type of infer- 
ence--any form of deduction, induction, or analogy. It involves "background knowledge," 
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E x t e r n a l  I n p u t  
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Figure I. An illustration of a general learning process. 

that is, the relevant parts of the learner's prior knowledge. Consequently, the information 
flow in a learning process can be characterized by a general schema shown in figure 1. 
In each learning cycle, the learner analyses the input information in terms of its background 
knowledge and its goals, and performs various inferences to generate new knowledge and/or 
a better form of knowledge. The "new knowledge" may be provided from the outside, or 
may be generated by induction, deduction, or analogy. It can be additional knowledge, 
or a change in the belief in the knowledge already possessed. (For further discussion of 
this topic, and a distinction between different types of new knowledge--'intrinsic" vs. 
"derived'--see section 4.) If the results of a given learning act are satsifactory from the 
viewpoint of the learning goal(s), they are assimilated within the learner's memory and 
become available for use in subsequent learning processes. 

The basic premise of the Inferential Learning Theory is that in order to learn, an agent 
has to be able to perform inference and to have memory that both stores the background 
knowledge (BK) needed for performing the inference and records "useful" results of infer- 
ence. Without either of the two components--the ability to reason and the ability to memorize 
and retrieve information from memory--no learning can be accomplished. Thus, one can 
write an "equation": 

Learning = lnferencing + Memorizing 

It should be noted that the term "inferencing" is used here in a very general sense, mean- 
ing any type of reasoning or knowledge transformation. The double role of memory, as 
a supplier of background knowledge and as a depository of results, is often reflected in 
the organization of a learning system. For example, in a neural net, background knowledge 
resides in the structure of the network, i.e., in the type and the number of units used, in 
the way they are interconnected, and in the initial weights of the connections. The learned 
knowledge usually resides only in the new values of the weights. In decision tree learning, 
the BK includes the set of attributes used to describe objects, the domains of the attributes, 
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and an attribute evaluation method. The knowledge created is in the form of a decision 
tree. In a "self-contained" rule-learning system, all background knowledge and learned 
knowledge would be in the form of rules. A learning process would involve modifying 
prior rules and/or creating new ones. The ultimate learning capabilities of a learning system 
are determined by what it can or cannot change in its knowledge base, and by what kinds 
of inference and knowledge transformations it is capable of performing. 

The Inferential Learning Theory postulates that a learning process depends on the input 
information (input), background knowledge (BK), and learning goal. These three compo- 
nents constitute a learning task. The learning task determines what type of learning strategy 
or strategies need to be employed (by "learning strategy" is roughly meant a combination 
of the type of inference employed and the computational and the representational mechanism 
used to implement it). An input to any step of learning can be sensory observations, knowl- 
edge communicated by a source (e.g., a teacher), or knowledge generated by the previous 
learning step. Although most learning systems assume that input is in the form of facts 
or concept examples, a learning system should be able to learn from any type of knowledge, 
including previously formed generalizations, conceptual hierarchies, mathematical equa- 
tions, knowledge at any level of abstraction, estimates of certainty of given knowledge, 
or any combination of various types. 

The key idea of the theory is that processes involved in accomplishing a learning goal 
can be characterized in terms of generic patterns of inference, called knowledge transmuta- 
tions. A knowledge transmutation takes an input and background knowledge as arguments 
and generates a new piece of knowledge. It represents conceptually simple and comprehen- 
sible units of knowledge transformation, and it can employ any type of inference. Specifically, 
the theory views a learning process as a search through a knowledge space, conducted 
by applying knowledge transmutations as search operators: 

Given: 
® Input knowledge (I) 
® Goal (G) 
® Background knowledge (BK) 
• Transmutations (T) 
Determine: 
• Output knowledge O that satisfies goal G, by applying transmutations from the set T 

to input I and/or background knowledge BK. 

By the input knowledge (I) is meant here any information (facts, examples, general knowl- 
edge, etc.) that the learner receives from the environment or as results of previous steps 
of learning. Goal (G) specifies criteria to be satisfied by the Output Knowledge (O) in order 
that learning is accomplished. Background knowledge (BK) is a part of learner's prior knowl- 
edge that is relevant to a given learning process. While complete and formal definition 
of "relevant" knowledge goes beyond the scope of this article, as a working definition the 
reader may assume that it is a part of prior knowledge that can be useful at any stage of 
a given learning process. 

Transmutations are operators that make knowledge changes in the knowledge space. The 
knowledge space is a space of knowledge representations that can represent all possible 
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inputs, all of the learner's background knowledge, and all knowledge that the learner can 
potentially generate. In the context of empirical inductive learning, the knowledge space 
is usually called a description space. 

For illustration, here are a few examples of transmutations. An inductive generalization 
takes one or more concept examples and creates a general description of them. An 
explanation-based generalization is a form of deductive generalization that takes an example 
from an "operational" description space, a concept description from an "abstract" descrip- 
tion space, and relevant domain knowledge, and derives from them a concept description 
in the operational description space (see, e.g., Mitchell, Keller, & Kedar-Cabelli, 1986). 
Sections 4 to 7 define and discuss several fundamental knowledge transmutations, such 
as generalization, abstraction, and similization, and their counterparts, specialization, con- 
cretion, and dissimilization. Other types of transmutations, due to space limitations, are 
discussed only very briefly. 

The analysis and explanation of diverse learning processes in terms of underlying knowl- 
edge transmutations is a major topic of the Inferential Theory of Learning. The transmuta- 
tions represent transformations of various aspects of knowledge, and they can be implemented 
in many different ways. Depending on the knowledge representation and the computation 
mechanism, knowledge transmutations can be performed explicitly or implicitly. In symbolic 
learning systems, transmutations are usually (but not always) implemented in a more or less 
explicit way and executed in steps that are conceptually comprehensible. For example, the 
INDUCE learning system performs inductive generalization according to certain generaliza- 
tion rules--selective or constructive--where each rule represents a conceptually simple 
transformation (Michalski, 1983; Bloedorn & Michalski, 1991; Wnek & Michalski, 1991a). 

In neural networks, transmutations are performed implicitly, in steps dictated by the un- 
derlying computational mechanism. These steps may not correspond to any conceptually 
simple operations or rules of inference. For example, a neural network may generalize an 
input example by performing a sequence of small modifications of weights of internode 
connections. Individual weight modifications may be difficult to explain in terms of explicit 
inference rules. Nevertheless, they can produce a global effect equivalent to generalizing 
a set of examples. 

Such an effect can be easily demonstrated by a method for diagrammatic visualization 
(DIAV). In DIAV, concepts are mapped into sets of cells in a planar diagram, which repre- 
sents a multidimensional space spanned over multivalued attributes. Operations on concepts 
are visualized by changes in the configurations of the corresponding sets of cells. Examples 
of diagrammatic visualization of inductive generalizations performed by a neural network, 
a genetic algorithm, and symbolic learning systems are presented by Wnek and Michalski 
(1991b, 1993). 

A learning goal is a necessary component of any learning process. Given an input, and 
some nontrivial background knowledge, a learner could potentially generate an unbounded 
number of inferences. To limit the proliferation of choices, a learning process is constrained 
and/or guided by the learning goal. A learning goal determines what parts of prior knowl- 
edge are relevant, what knowledge is to be acquired, in which form, and how the learned 
knowledge is to be evaluated. There can be many different types of learning goals, and 
they can be expressed explicitly or implicitly. Goals can be classified roughly as domain 
independent or domain dependent. 
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Domain-independent goals call for a certain type of learning activity, independent of 
the topic of discourse, e.g., to acquire a general rule for classifying given facts, to confirm 
a given piece of knowledge, to derive from it some other knowledge, to concisely describe 
given observations, to discover a regularlity in a collection of data, to find a causal expla- 
nation of a found regularity, to acquire control knowledge, to reformulate given knowledge 
to a more effective form, to solve a problem of a given type, to plan what to learn, etc. 
Domain-dependent goals call for acquiring a problem of a given type, to plan what to learn, 
etc. Doman-dependent goals call for acquiring a specific piece or type of domain knowledge. 
A learner may pursue more than one goal, and the goals may be conflicting. When they 
are conflicting, their relative importance controls the amount of effort that is extended to 
pursue any of them. The relative importance of specific goals depends on the importance 
of higher-level goals. Thus, learning processes are controlled by a hierarchy of goals and 
the estimated degrees of their importance. 

Most machine learning research has so far given relatively little consideration to the 
problem of learning goals and how they affect learning processes. As a result, many devel- 
oped systems are method oriented rather than problem oriented. There have been, however, 
several investigations of the role and the use of goals in learning and inference (e.g., Stepp 
& Michalski, 1983; Hunter, 1990; Ram, 1991; Ram & Hunter, 1992). Among the impor- 
tant research problems related to this topic are the development of methods for goal represen- 
tation, for using goals to guide a learning process, and to understand the interaction and 
conflict resolution among domain-independent and domain-specific goals. These issues 
are of significant importance to the understanding of learning in general, and interest in 
them will likely increase in the future. 

In sum, Inferential Learning Theory states that learning is a goal-guided process of deriv- 
ing desired knowledge by using input information and background knowledge. Such a proc- 
ess involves a search through a knowledge space, using knowledge transmutations as oper- 
ators. Knowledge transmutations can involve any type of inference. 

3. Types of inference 

The central property of any knowledge transmutation is the type of underlying inference. 
The inference type characterizes the transmutation along the truth-falsity dimension, and 
thus determines the validity of the knowledge derived by it. For this reason, before discussing 
different knowledge transmutations, we will first analyze basic types of inference that can 
be involved in them. 

Any type of inference can produce some useful knowledge worth remembering for future 
use. Consequently, a complete learning theory has to include a complete theory of inference. 
Such a theory of inference has to account for all possible types of inference. To this end, 
figure 2 presents an attempt to illustrate schematically all major types of inference. The 
first classification divides inferences into two fundamental types: deductive and inductive. 
In defining these types, many conventional approaches do not distinguish between the input 
information and the reasoner's prior knowledge. Such a distinction, however, is important 
from the learning theory viewpoint, because in a given learning process, there is clearly 
a difference between the knowledge already possessed by the learner and the information 
communicated from the outside. 
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Figure 2, A classification of major types of inference. 

To characterize basic types of inference in a general, language-independent way, consider 
the entailment 

p U P K ] =  C (1) 

where P stands for a set of statements, called the premise, BK stands for a set of statements 
representing the reasoner's background knowledge, and C stands for a set of statements, 
called the consequent. P is assumed to be consistent with BK. 

Deductive inference is deriving consequent C, given P and BK. Inductive inference is 
hypothesizing premise P, given C and BK. Thus, deduction can be viewed as "tracing for- 
ward" the relationship (1), and induction as "tracing backward" this relationship. Because 
(1) succinctly explains the relationship between two fundamental forms of inference, it is 
called the fundamental equation for inference. 

Deduction is truth-preserving, i.e., C must be true if P and BK are true, and induction 
is falsity-preserving, i.e., if C is false, then P must be false also, if BK is true. (The latter 
property applies to every type of induction such as inductive generalization, abduction, 
inductive specialization, concretion, and others--see section 5). 

In a general view of deduction and induction that also captures their approximate or 
common sense forms, the "strong" entailment I= in (1) may be replaced by a "weak" 
entailment. A weak entailment includes cases in which C is only a plausible, probabilistic, 
orpartial consequence of P and BK. The difference between a "strong" (valid) and "weak" 
(plausible) entailment leads to another major classfication of types of inference. 

Specifically, inferences can be conclusive or contingent. Conclusive inferences assume 
"strong" entailment; they are true in every possible situation. Contingent inferences assume 
only "weak" entailment; they may be true in some situations and not true in others. Con- 
clusive deductive inferences are "strongly" truth-preserving, and conclusive inductive in- 
ferences are "strongly" falsity-preserving. Contingent deductive inferences are "weakly" 
truth-preserving, and contingent inductive inferences are "weakly" falsity-preserving. 

If  inductive inference produces a statement that characterizes a larger set of entities than 
the input statement (C), then it is called an inductive generalization. As shown below, such 
an inference is based on tracing backward a domain-independent (tautological) implication, 
known as the rule of universal specialization. I f  it hypothesizes a premise that explains 
the input, then it is called abduction. Abduction is based on tracing backward domain- 
dependent implications. These distinctions are illustrated by the examples below. 

10 
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A conclusive deductive inference is illustrated by the following transmutation: 

Input 12 ~ X 
BK Yx E X, q(x) 

(vx ~ X, q(x)) 

(12 is an element of X.) 
(All elements of X have property q.) 

= (12 ~ X = q(12)) (If all elements of X have property q, 
then any element of X, e.g., 12, must have property q. 

Output q(12) (12 has property q.) 

If  Input is the premise P, and Output is the consequent C, then the fundamental equation 
(1) is clearly satisfied. In constrast, the following transmutation illustrates conclusive 
induction: 

~nput 
BK 

q(12) (t2 has property q.) 
t2 E X (12 is an element of X.) 
(~'x ~ X, q(x)) ~ (12 ~ X = q(12)) (If all elements of X have property q, 

then any element of X, e.g., 12, must have property q. 

Output Yx E X, q(x) (Maybe all elements of X have property q.) 

The Output is obtained by tracing backward a tautological implication (listed as part of 
BK), known in logic as the rule of universal specialization. If  Input is the consequent C 
and the Output is the premise P, then the fundamental equation (1) is satisfied, because 
the union of sentences in Output and BK entails the Input. The inference is falsity-preserving, 
because if the Input were not true (it did not have the property q), then the hypothetical 
premise (Output) would have to be false. This form of induction is called generalization 
because it hypothesizes a statement in which the property that characterized only one ele- 
ment (12) now characterizes a larger set (X). The output from induction is uncertain, which 
here, and henceforth is indicated by the qualifier "Maybe." 

To proceed, we will introduce two important concepts, a reference set and a descriptor. 
A reference set of a statement (or set of statements) is an entity or a set of entities that 
this statement(s) describes or refers to. A descriptor is an attribute, a relation, or a transfor- 
mation whose instantiation (value) is used to characterize the reference set or the individual 
entities in it. For example, consider a statement: "Nicholas is of medium height, has a 
Ph.D. in astronomy from the Jagiellonian University, and likes travel." The reference set 
here is the singleton "Nicholas." The sentence uses three descriptors: a one-place attribute, 
"height(person)"; a binary relation, "likes(person,activity)"; and a four-place relation, 
"degree-received(person, degree, topic, university)." 

Consider another statement: "Most people on Barbados and Dominica have beautiful 
dark skin." Here the reference set is "Most people on Barbados and Dominica," and the 
descriptors are "skin-color(person)" and "skin-attractiveness(person)." What is the reference 
set and what are descriptors in a statement or set of statements may be a matter of inter- 
pretation and/or context. However, once the interpretation is decided, other concepts below 
can be consistently applied. 

11 
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Using the above concepts, a generalization is characterized as a transmutation that ex- 
tends the reference set of the input statement(s). Abduction (also called explanation) is 
characterized as a transmutation that hypothesizes explanations of the properties of the 
reference set, but does not change the set. An opposite of abduction is prediction, which 
derives consequences of the properties of the reference set. Here is an illustration of an 
abduction: 

Input q(12) 
BK Yx E X, q(x) 

(vx ~ X, q(x)) = (12 E X = q(12)) 

(12 has property q.) 
(All elements of X have property q.) 

Output 12 ~ X (Maybe 12 is an element of X.) 

The Input states that the reference set 12 has the property q. The abductive transmutation 
hypothesizes that (~ is an element of X, which is the context of BK can be viewed as an 
explanation of the Input: q(12) because 12 ~ X. The fundamental equation (1) holds, because, 
if Output is true, then Input must also be true in the context of BK. Again, if Input were 
not true, then Output could not be true; thus the inference preserves falsity. As in generaliza- 
tion, Output was obtained by "tracing backward" a rule in BK (12 fi X ~ q(12)). 

In both cases above, generalization and abduction, Output plus BK (strongly) entails Input. 
These forms are therefore called conclusive induction and conclusive abduction, respec- 
tively (as opposed to contingent induction and contingent abduction, described below). 

In the literature, some authors restrict abduction to processes of creating the "best" ex- 
planation of a given fact, i.e., to inferences involving "tracing backwards" the "strongest" 
implication, whose right-hand side states the given fact. A difficulty with this view is that 
it is not always easy to determine which explanation among the alternative ones is the "best?' 
If producing an alternative but not the "best" explanation is not abduction, then what is 
and what is not abduction depends on the measure of "goodness" of explanation, rather 
than on logical properties of inference. Some authors also require that the explanation is 
"causal." Since the rule "All elements of X have property q" (or, "If  an entity belongs 
to X, then it has property q") does not express a causal relationship, then the reasoning 
illustrated in the example above would not be classified as abduction. 

This article views the concept of abduction in a more general sense. Specifically, abduc- 
tion is viewed as an inference that generates explanations of a given reference set, and 
is done by tracing backward certain domain-dependent implications. If these implications 
represent causal relationships, then abduction produces causal explanations. Peirce (1965), 
who originally introduced the concept of abduction, did not restrict it to reasoning produc- 
ing only the "best" or only "casual" explanations (for a discussion on the relationship 
between abduction and deduction, see Console, Theseider, & Torasso, 1991). Some theoreti- 
cal views on abduction are found in Zadrozny (1991). For an analysis and development 
of casual reasoning in humans, see Shultz and Kestenbaum (1985). 

Conventional definitions of abduction describe it as "tracing backwards" an implicative 
rule. We will now show that such a view makes a tacit assumption that, if violated, allows 
abduction to produce completely implausible inferences. Consider, for example, the follow- 
ing inference: 

12 
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Input Color(My-Pencil, Green) (My pencil is green.) 
BK Type (object, Grass) = Color(object, Green) (If an object is grass then 

it is green.) 

Output Type(My-Pencil, Grass) (Maybe my pencil is grass.) 

Although the implication in BK is quite strong, the abductive derivation based on it is im- 
plausible. The reason for this is that the implication 

Color(object, Green) = Type(object, grass) (If an object is green then it is grass.) 

normally holds only with an infinitesimal likelihood. Thus, abduction can produce an im- 
plausible hypothesis if the reverse implication has insufficient "strength." This simply means 
that abductive derivation makes an assumption about the "reverse strength" of an implica- 
tion employed in it. To make this issue explicit, we introduce a more general form of impli- 
cation as a basis for abductive derivation. 

Definition. A mutual implication or, for short, an m-implication, describes a logical de- 
pendency between statements (well-formed predicate logic expressions) in both directions: 

A ~ B: a ,  /3 (2) 

where ~ and/3, called merit parameters, express the forward strength and the backward 
strength of the m-implication, respectively. 

An m-implication can be used for reasoning by tracing it in either direction. Tracing it 
forward (from the left to the right) means that if  A is known to be true, then B can be 
asserted as true with the degree of belief c¢, if no other information relevant to B is known 
that affects this conclusion. Tracing an m-implication backward means that if B is known 
to be true, then A can be asserted as true with the degree of belief/3, if no other informa- 
tion relevant to A is known that affects this conclusion. The m-implication reduces to a 
logical implication if c¢ is 1 and/3 is unknown (in which case it is written as A ~ B). 

I f  any of the parameters ot or/3 takes value 1 (which represents a complete belief), then 
the m-implication is conclusive (or demonstrative) in the direction for which the merit 
parameter equals 1; otherwise it is called mutually-contingent (or m-contingent.) In many 
situations, it is convenient to express an m-implication that has merit parameters (or only 
one) sufficiently high to merit their consideration without stating their precise values. For 
this purpose, we use symbols ~ (or ~ ) ,  without listing ~ and/3. Thus, an m-implication 
A *~ B: a,  ~3, in which ot and/3 are unspecified but are above some "threshold of accept- 
ability," is alternatively written A ,-. B, or A --* B. The concept of mutual implication 
was originally postulated in the theory of plausible reasoning (Collins & Michalski, 1989), 
which was developed by analyzing protocols recording examples of human reasoning. 

Based on the above definition, one can say that abduction produces a plausible conclu- 
sion, if it traces backward a mutual implication in which/3 is sufficiently high. Thus, if 
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abduction is based on a standard implication (in which ~ is unknown), then it can be quite 
haphazard reasoning. Section 7 shows that a generalized form of mutual implication pro- 
vides a formal basis for analogical inference. 

The concept of an m-implication raises two basic problems: how merit parameters are 
determined, and how they are combined and propagated in reasoning through a network 
of m-implications. Regarding the first problem, the simplest interpretation of them is to 
assume that tx = p(B I A) and/~ = p(A [ B). However, to make the concept of m-implication 
applicable for expressing many kinds of dependencies (including those occuring in human 
plausible reasoning), it is assumed that merit parameters do not have only one interpreta- 
tion or representation. In a general view of m-implication, they can be precise values or 
only estimates of conditional probability, ranges of probabilities, degrees of dependency 
based on a contingency table (e.g., Goodman & Kruskal, 1979; Piatetsky-Shapiro, 1992), 
characterizations of the "strength" of dependency provided by an expert, or some other 
measures of dependency. 

As to the second problem (how to combine merit parameters in reasoning with multiple 
m-implications), a comprehensive study of ideas and methods for the case of the probabilistic 
interpretation of merit parameters is presented by Pearl (1988). He uses "Bayesian net- 
works" for updating and propagating beliefs based on a probabilistic model. 

The fundamental difficulty in solving the second problem generally is that all logics of 
uncertainty, such as multiple-valued logic, probabilistic logic, fuzzy logic, etc., are not 
truth-functional, which means that there is no definite function for combining uncertainties. 
The reason is that the certainty of a conclusion from uncertain premises does not depend 
solely on the certainty (or probability) of the premises, but also on their meaning and their 
semantic interrelationship. The ultimate solution of this open problem will require methods 
that take into consideration both merit parameters and the meaning of the sentences. The 
results of research on human plausible reasoning conducted by Collins and Michalski (1989) 
show that people derive a combined certainty of a conclusion from uncertain premises by 
taking into consideration structural (or semantic) relations among the premises, based on 
a hierarchical knowledge representation, and involve also other types of merit parameters, 
such as typicality, frequency, dominance, etc. 

Conclusive inferences are those that involve tracing mutual implications in which one 
merit parameter equals 1 (assuming that the input statement is true and perfectly matches 
the premise). Tracing mutual implications in which both merit parameters are below 1 
(or when the above assumptions are not true) produces contingent inferences. In natural 
language, the contingency of a conclusion is expressed by a qualitative or quantitative degree 
of "strength" or "truth" (e.g., "maybe," "probably," "likely," "with probability of .7;' 
with a "degree of belief," "certainty," or "confidence," etc.), or by a contingent quantifier 
(e.g., "most," "frequently, . . . .  usually," "90% of . . .  ," etc.). Suppose, for example, that 
BK contains a statement "Most elements of X have property q" and input is "x is a member 
of X." Deriving the statement "x likely has the property q" is a contingent deduction. 

Let us consider more examples of contingent inferences. Consider a statement: "Fire 
usually produces smoke." This statement can be viewed as a weak mutual implication (both 
merit parameters are below 1). If one sees fire, then by contingent deduction one may derive 
a conclusion that there may be smoke. If one observes smoke, then by contingent induction 
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("tracing backward" the m-implication), one may hypothesize that there may be fire. Since 
the m-implication represents domain knowledge, this form of induction is contingent ab- 
duction. It explains "fire" by hypothesizing "smoke." Notice that if the input is false (there 
is no smoke), the uncertainty degree (falsity) of the hypothesis depends on the forward 
strength of the mutual implication. 

In the above example, reasoning in both directions of the m-implication is uncertain. 
This might suggest that there is no intrinsic difference between contingent deduction and 
contingent induction (in the case above, abduction). A usual way of distinguishing between 
the two types of inference is to check if the entailment I = in a given instantiation of (1) 
represents as a causal ordering, i.e., if P can viewed as a cause and C as an effect. In 
such a situation, contingent deduction (or contingent prediction) derives a plausible conse- 
quent, C, of the causes represented by P. Abduction derives plausible causes, P, of the 
consequent C. Since we can say that "fire causes smoke," and not the converse, then the 
above rule allows us to make a qualitiative distinction between inferences that trace this 
implication in one or another direction. Contingent deduction (prediction) can thus be viewed 
as "tracing forward" and abduction as "tracing backward" contingent, causally ordered 
dependencies. 

This distinction, however, is not generally sufficient. The problem is that there are mutual 
implications that do not represent causal dependencies. For example, consider the state- 
ment "Prices at Tiffany's tend to be high." This statement expresses a non-causal mutual 
implication: 

Purchased-at(item, Tiffany's) ¢* Price(item, High): c~, ~3 (3) 

If one is told that an item, e.g., a crystal vase, was purchased at Tiffany's, then one may 
conclude, with confidence c~, that the price of it was high (if no other information about 
the price of the vase is known). The conclusion is uncertain ifc~ < 1 (which reflects, e.g., 
the possibility of a sale). If  one is told that the price of an item was high, then one might 
hypothesize, with confidence/3 (usually low) that perhaps the item was purchased at Tiffany's. 
The confidence/3 depends on our knowledge about how many expensive shops are in the 
area where the item was purchased. Both inferences above are uncertain (assuming c¢, 
~ < 1), and there is no clear causal ordering underlying the m-implication. Which infer- 
ence is then contingent deduction, and which is contingent induction (or abduction)? 

The way we propose to resolve this problem is based on the observation that a conclusive 
deduction traces an implication in the "strong" direction (with the degree of strength 1), 
and abduction traces such an implication in a "weaker" direction. Generalizing this prop- 
erty to reasoning with weak mutual implications that are not causal dependencies, we pro- 
pose the rule: reasoning in the direction of the greater strength of an m-implication is deduc- 
tion, and reasoning in the direction of the weaker strength is induction (abduction, if  the 
m-implication represents a domain knowledge). I f  reasoning in both directions has the same 
strength, there is no distinction between deduction and induction. For example, reasoning 
based on tracing logical equivalence is deduction or induction both ways. 

Going back to our example with Tiffany's, one may observe that c¢ is usually significantly 
higher than ~3 (unless Tiffany's is the only expensive store in the area under consideration). 
Thus, the forward reasoning based on (3) can be viewed as contingent deduction, and the 
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backward reasoning as contingent abduction. The distinction between contingent deduction 
and contingent induction (or abduction) is in this case a matter of degree, and it depends 
on the assumptions underlying the m-implication used for inference. 

Summarizing, conclusive deductive inference is strictly truth-preserving, and conclusive 
induction is strictly falsity-preserving. A conclusive deduction produces a provable (valid) 
consequent from a given premise in the context of BK. A conclusive induction produces 
a "valid" hypothesis, which logically entails the given consequent in the context of BK 
(though the hypothesis itself may be false). Contingent deduction is truth-preserving and 
contingent induction is falsity-preserving to the degree defined by the forward strength of 
mutual implications involved in reasoning, respectively. Contingent induction is truth- 
preserving to the degree defined by the backward strength of the mutual implication. 

The intersection of deduction and induction, that is a truth- and falsity-preserving infer- 
ence, represents an equivalence-based inference, or reformulation transmutation. Such an 
inference transforms given knowledge into logically equivalent knowledge. For example, 
if A is logically equivalent to A', then the rule A = B can be transformed to A' = B. 
Analogy can be viewed as an extension of equivalence-based inference, namely, as a 
"similarity-based" inference. For example, if A is similar to ~ in terms relevant to B (for 
an explanation, see section 7), then from A = B one can plausibly derive ~,~ = B. Analogy 
occupies the central area in the diagram in figure 2 because deriving new knowledge by 
analogy can be viewed formally as a combination of induction and deduction. Details on 
this idea are in section 7. 

4. Knowledge transmutations 

As stated earlier, transmutations are generic patterns of knowledge change, and their instan- 
tiations can be viewed as operators in knowledge spaces. A transmutation may change some 
aspect of the input knowledge, derive new knowledge, or perform certain manipulations 
on knowledge that do not change its content. Formally, a transmutation can be viewed as 
a transformation that takes as arguments a set of sentences (S), a set of entities (E), and 
background knowledge (BK), and generates a new set of sentences (S'), and/or new set 
of entities (E'), and/or new background knowledge (BK'): 

T: S, E, BK -~ S', E', BK' (4) 

Transmutations can be classified into two categories. In the first category are knowledge- 
generation transmutations that change informational content of the input knowledge. Such 
transmutations represent patterns of inference. For example, they may derive consequences 
from given knowledge, suggest new hypothetical knowledge, determine relationships among 
knowledge components, confirm or disconfirm given knowledge, perform mathematical 
operations on quantitative knowledge, organize knowledge into certain structures, etc. 
Knowledge-generation transmutations are performed on statements that have a truth status. 

In the second category are knowledge-manipulation transmutations that view input knowl- 
edge as data or objects to be manipulated. They can be performed on statements (well- 
formed logical expressions) or on terms (sets). They include inserting (deleting) knowledge 
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components into (from) give knowledge structures, physically transmitting or copying 
knowledge to/from other knowledge bases, or ordering knowledge components according 
to some syntactic criteria. 

Transmutations are typically bidirectional operations, that is, they can be grouped into 
pairs of opposite operators, except for derivations that span a range of transmutations; the 
endpoints of this range are opposites. Below is a summary of knowledge transmutations 
that have been identified in the theory as frequently occuring in human reasoning or machine 
learning algorithms. This is not an exhaustive list; further research will likely identify other 
transmutations. The first eight groups represent knowledge-generation transmutations, and 
the remaining ones represent knowledge-manipulation transmutations. It should be noted 
that these transmutations can be applied to all kinds of knowledge expressed in a declarative 
way--specific facts, general statements, metaknowledge, control knowledge, or goals. 

1. Generalization~specialization. The generalization transmutation extends the reference 
set of the input, that is, it generates a description that characterizes a larger reference set 
than the input. Typically, the underlying inference is inductive, that is, the extended set 
is inductively hypothesized. Generalization can also be deductive, when the more general 
description is deductively derived from the more specific one using background knowledge. 
It can also be analogical, when the more general description is hypothesized through analogy 
to a generalization performed on a similar reference set. The opposite transmutation is 
specialization, which narrows the reference set. Specialization usually employs deductive 
inference, but there can also be an inductive or analogical specialization. 

2. Abstraction/concretion. Abstraction reduces the amount of detail in a description of 
the given reference set. It may change the description language to one that uses more abstract 
concepts or operators, which ignore details irrelevant to the reasoner's goal. The underlying 
inference is typically deduction. An opposite transmutation is concretion, which generates 
additional details about the reference set. 

3. Similization/dissimilization. Similization derives new knowledge about a reference set 
on the basis of the similarity between this set and another reference set about which the 
learner has more knowledge. The similization is based on analogical inference. The oppo- 
site operation is dissimilization, which derives new knowledge on the basis of the lack of 
similarity between the compared reference sets. These transmutations are based on the pat- 
terns of inference presented in the theory of plausible reasoning by Collins and Michalski 
(1989). For example, knowing that England grows roses and that England and Holland have 
similar climates, a similization transmutation is to hypothesize that Holland may also grow 
roses. An underlying background knowledge here is that there exists a dependency between 
the climate of a place and the type of plants growing in that location. A dissimilization 
transmutation is to infer that bougainvilleas probably do not grow in Holland, because 
Holland has very different climate from the Caribbean Islands where they are very popular. 
These transmutations are based on analogical inference, which can be characterized as a 
combination of inductive and deductive inference (see section 7). 

4. Association/disassociation. The association transmutation determines a dependency 
between given entities or descriptions based on the observed facts and/or background 
knowledge. The dependency may be logical, causal, statistical, temporal, etc. Associating 
a concept instance with a concept name is an example of an association transmutation. 

17 



126 R.S. MICHALSKI 

The opposite transmutation is disassociation, which asserts a lack of dependency. For ex- 
ample, determining that a given instance is not an example of some concept is a disassocia- 
tion transmutation. 

5. Selection/generation. The selection transmutation selects a subset from a set of entities 
(e.g., a set of knowledge components) that satisfies some criteria. For example, choosing 
a subset of relevant attributes from a set of candidates, or determining the most plausible 
hypothesis among a set of candidate hypotheses, is a selection transmutation. The opposite 
transmutation is generation, which generates entities of a given type. For example, generating 
an attribute to characterize a given entity, or creating an alternative hypothesis to the one 
already generated, is a form of generation transmutation. 

6. Agglomeration/decomposition. The agglomeration transmutation groups entities into 
larger units according to some goal criterion. I f  it also hypotheses that the larger units 
represent general patterns in data, then it is called clustering. The grouping can be done 
according to a variety of principles, e.g., to maximize some mathematical notion of similarity, 
as in conventional clustering, or to maximize "conceptual cohesiveness," as in conceptual 
clustering (e.g., Stepp & Michalski, 1983). The opposite transmutation is a decomposi- 
tion, which splits a group (or a structure) of entities into subgroups, according to some 
goal criterion. 

7. Characterization~discrimination. A characterization transmutation determines a char- 
acteristic description of a given set of entities, which differentiates these entities from any 
other entities. A simple form of such a description is a list (or a conjunction) of all proper- 
ties shared by the entities of the given set. The opposite transmutation is discrimination, 
which determines a description that discriminates the given set of entities from another 
set of entities (Michalski, 1983). 

8. Derivations: Reformulation~intermediate transmutations~randomization. Derivations 
are transmutations that derive one piece of knowledge from another piece of knowledge 
(based on some dependency between them), but do not fall into the special categories de- 
scribed above. Because the dependency between knowledge components can range from 
logical equivalence to random relationship, derivations can be classified on the basis of 
the strength of dependency into a wide range of forms. The extreme points of this range 
are reformulation and randomization. Reformulation transforms a segment of knowledge 
(a set of conceptually related sentences) into a logically equivalent segment of knowledge. 
For example, mapping a geometrical object represented in a right-angled coordinate system 
into a radial coordinate system is a reformulation. In contrast, randomization transforms 
one knowledge segment to another one by making random changes. For example, the muta- 
tion operation in a genetic algorithm represents a randomization. Deductive derivation, 
abductive explanation, and prediction can be viewed as intermediate derivations. Mathemati- 
cal or logical transformations of knowledge also represent forms of derivations. A weak 
intermediate derivation is the crossover operator used in genetic algorithms, which derives 
new knowledge by exchanging two segments of related knowledge components. 

9. Insertion~deletion. The insertion transmutation inserts a given knowledge component 
(e.g., a component generated by some other transmutation) into a given knowledge struc- 
ture. The opposite transmutation is deletion, which removes some knowledge component 
from a given structure. An example of deletion is forgetting. 
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10. Replication~destruction. Replication reproduces a knowledge structure residing in 
some knowledge base in another knowledge base. Replication is used, e.g., in rote learn- 
ing. There is no change of the contents of the knowledge structure. The opposite transmuta- 
tion is destruction, which removes a knowledge structure from a given knowledge base. 
The difference between destruction and deletion is that destruction removes a copy of a 
knowledge structure that resides in some knowledge base, while deletion removes a com- 
ponent of a knowledge structure residing in the given knowledge base. 

11. Sorting/unsorting. The sorting transmutation changes the organization of knowledge 
according to some criterion. For example, ordering decision rules in a rule base from the 
shortest (having the smallest number of conditions) to the longest is a sorting transmuta- 
tion. An opposite operation is unsorting, which is returning to the previous organization. 

Figure 3 provides a summary of the above transmutations together with the underlying 
types of inference. It is postulated that, depending on the amount of available background 
knowledge and the way that the input and the background knowledge are employed, any 
knowledge-generation transmutation can be, in principle, accomplished by any type of infer- 
ence, i.e., deduction, induction, or analogy. Figure 3 illustrates this by linking these trans- 
mutations with all three forms of inference. Exceptions to this rule are similization and 
dissimilization, which are based on analogy (analogy is viewed as deduction and induction 
combined). A vertical link between lines stemming from the nodes denoting similarity/dis- 
similarity transmutations signifies that these transmutations combine deduction with induc- 
tion (for an explanation, see section 7). 

Transmutations that employ induction, analogy, or contingent deduction increase the 
amount of intrinsic knowledge in the system. By intrinsic knowledge we mean knowledge 
that cannot be conclusively deduced from other knowledge in the system. Learning that 
changes the amount of the system's intrinsic knowledge is called synthetic (it has been also 
called "learning at the knowledge level" (Newell, 1981; Dietterich, 1986)). Transmutations 
that employ only conclusive deduction increase the amount of derived knowledge in the 
system. Such knowledge is a logical consequence of what the learner already knows. Learn- 
ing that changes only the amount of derived knowledge in the system is called analytic 
(Michalski & Kodratoff, 1990). 

In actual use, different transmutations are typically performed using only one type of 
inference. For example, generalization and agglomeration are typically done through induc- 
tion, and specialization and abstraction through deduction. 

Generalization can also be deductive (as, e.g., in explanation-based generalization), or 
analogical (when a more general description is derived by an analogy to some other 
generalization transformation). Specialization is typically deductive, but it can also be in- 
ductive or analogical. 

Thus, the theory views transmutations as different types of change in knowledge, and 
inferences as different ways in which these changes can be accomplished. This is a radical 
departure from the traditional view of these issues. The traditional view blurs the proposed 
distinctions; for example, it typically equates generalization with induction, and specialization 
with deduction. 

The proposed view stems from our efforts to provide an explanation of different opera- 
tions on knowledge observed in people's reasoning and to relate this explanation to formal 
types of inference in a consistent way. Experiments performed with human subjects have 
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Knowledge Generation Transmutations 

Inference Type 
~ _  

DEDUCTION 

ANALOGY 

INDUCTION 
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~ Dissimilization 
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Derivations 
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Knowledge Manipulation Transmutations 

DEDUCTION 
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~ Destruction 

~ Sorting 
Unsorting 

Figure 3. A summary of transmutations and the underlying types of inference. 

shown that the proposed ideas agree well with typical intuitions people have about different 
types of transmutations. Further research is needed to formalize these ideas precisely. 

The theory views learning as a sequence of goal-oriented knowledge transmutations. For 
example, a generation transmutation may generate a set of attributes to characterize given 
entities. Another generation transmutation may create examples expressed in terms of these 
attributes. A general description of these examples is created by a generalization transmuta- 
tion. By repeating different variants of a generalization transmutation, a set of alternative 
general descriptions of these examples can be determined. A selection transmutation would 
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choose the "best" candidate description according to a criterion specified by the given 
learning goal. If a new example contradicts the description, a specialization transmutation 
would produce a new description that takes care of the inconsistency. The description ob- 
tained may be added to the knowledge base by an insertion transmutation. A replication 
transmutation may then copy this description into another knowledge base. 

The next section analyzes those transmutations that employ inductive inference, which 
are fundamental for the creation of instrinsically new knowledge. 

5. Admissible induction and inductive transmutations 

As described in section 3, induction produces a premise (a fact, a rule, a set of sentences, 
a theory, etc.) that together with BK entails a given consequent. In the case of inductive 
generalization, the entailment is guaranteed by the set-superset relationship between the 
input and output. In the case of abduction, the entailment is due to the implicative domain- 
dependent relationship that is being traced backward. For any given consequent C and non- 
trivial BK, one can generate a potentially infinite number of hypotheses that together with 
BK entail C, but only a few of them may be of any interest. One is usually interested only 
in "simple," "justifiable," and/or "plausible" hypotheses. Therefore, to limit the choices, 
an admissible induction is defined by adding constraints to the definition of induction in 
section 3. 

Definition. Given a consequent C and background knowledge BK, an admissible induction 
hypothesizes a premise P, consistent with BK, such that 

P t3 BK I = C (5) 

and P satisfies the hypothesis selection criterion. 

The selection criterion specifies how to choose a hypothesis anaong all candidates satisfy- 
ing (5), and may be a combination of several elementary criteria. In different contexts, 
or for different forms of induction, the selection criterion has been called a preference cri- 
terion (Popper, 1972; Michalski, 1983), a bias (Utgoff, 1986; Grosof & Russell, 1989) and 
a comparator (Poole 1989). Ideally, the selection criterion should reflect the properties 
of a hypothesis that are desirable from the viewpoint of the learner's goals, rather than 
be influenced by the properties of a particular induction method. 

In some learning programs, a part of the selection criterion may be hidden in the descrip- 
tion language used (a "description language bias"). For example, an inductive program 
may use a description language that is limited to only conjunctive statements involving 
attributes from a predefined set. Therefore any hypothesis generated will have to be in this 
form. Often, the selection criterion relates to the knowledge representation used. For exam- 
ple, when learning decision trees, the selection criterion may seek trees with a small num- 
ber of nodes (by choosing at each step the locally most informative attribute); when learn- 
ing DNF descriptions, it may seek the shortest DNF descriptions. 
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There are three generally desirable characteristics of a hypothesis: plausibility, utility, 
and generality. The plausibility expresses a desire to find a "true" hypothesis. Because 
the problem is logically underconstrained, the "truth" of a hypothesis cannot be guaranteed 
in principle. To satisfy equation (5) a hypothesis has to be complete and consistent with 
regard to the input facts (Michalski, 1983). Experiments have shown, however, that in situa- 
tions where the input contains errors or noise, an inconsistent and/or incomplete hypothesis 
(with regard to the input) will often lead to a better overall predictive performance than 
a complete and consistent one (e.g., Bergadano et al., 1992). The utility criterion requires 
a hypothesis to be simple to express and easy to apply to the expected set of problems. 
The generality criterion seeks a hypothesis that can predict a large range of new cases. 

The view of induction described above is more general than the one often expressed in 
machine learning literature. It is also consistent with many long-standing thoughts on this 
subject going back to Aristotle (e.g., Adler & Gorman, 1987; Aristotle, 1987). Aristotle, 
and many subsequent thinkers, e.g., Bacon (1620), Whewell (1857), Cohen (1970), Popper 
(1972), and others, viewed induction as a fundamental inference for all processes of creating 
new knowledge. They did not limit it--as is sometimes done--to only inductive empirical 
generalization. 

Induction underlies a number of knowledge transmutations, such as inductive generaliza- 
tion, inductive specialization, abductive derivation, and concretion (not a complete list). 
The first two were illustrated in section 3. The other two are illustrated below. 

In principle, all knowledge-generation transmutations described in section 4 can have 
a form involving inductive inference. Inductive generalization is central to many learning 
processes. As mentioned earlier, it extends the reference set described, e.g., it extends a 
set of training concept examples to the set of all concept instances. Such an operation can 
be done with or without changing the description space. 

If generalization is done without change of description space (i.e., without modifying 
descriptors or introducing new descriptors), then generalization is called empirical or selec- 
tive. If generalization is done by changing the description space into a more problem-oriented 
one (e.g., some initially given descriptors are modified or removed, and new descriptors 
added), then generalization is called constructive (Michalski, 1983; Wnek & Michalski, 
1991a). (See figure 4 for an example.) 

Another form of inductive transmutation is inductive specialization, which decreases the 
reference set described in the input. Typically, a generalization is inductive and a specializa- 
tion is deductive. However, depending on the way the input is transformed, a generalization 
transmutation may also be deductive, and a specialization transmutation may also be induc- 
tive (as shown in figure 4). Both generalization and specialization transmutations may also 
be analogical when the description of an extended or contracted reference set is hypothesized 
by analogy. Abuductive derivation derives an explanation of properties of a given reference 
set. Concretion is the opposite of abstraction (see the next section). It hypothesizes more 
specific information about a given reference set. 

Figure 4 presents examples of the above transmutations. In the examples, to indicate that 
some m-implications are not conclusive (not logical implications) but are sufficiently strong 
to warrant consideration (characterize a tendency), the symbol ~ is used. The parameter 
c¢ stands here for "maybe." Given an input and BK, there are usually many possible induc- 
tive transmutations of them; here we list one of each type--the one that is normally perceived 
as the most "natural." The first, third, and fourth example in figure 4 represent conclusive 
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• E m p i r i c a l  induc t i ve  e enera l i za t i on  
(Background knowledge-limited) 
Input: Pntng(GF, Dwski) ~ Btfl(GF) 

Pntng(LC, Dwski) =~ Btfl(LC) 
BK; Vx,P(x) :=;, P(~) 
Output: ~'x,Pntng(x, Dwski) ~ Btfl(x): a 

• C o n s t r u c t i v e  i n d u c t i v e  e e n e r a l i z a t i o n  
(Background knowledge-intensive) 
Input: Pntng(GF, Dwski) ~ BtfI(GF) 

Pntng(LC, Dwski) ~ Btfl(LC) 
BK: 'qx.v. Pntng(x.v~&Btfl(x) < ~ >  Exo(x) 
Oug~ut: ~'x,Pntng(~, Dwski) =~ Exp(x): ot 

• l~luctive s t~ecial izat ion 
Input: Lives(John, Virginia) 
BK: Fairfax c Virginia 

Vx.v.z. v ~ z&Lives(x.v)~Lives(x.z) 
Output." Liv~s(J6hn, Fairfax): ~x 

• C o n c r e t i o n  
Input: Going-to(John, New York) 
BK: Likes(John, driving) 

~'x,y, Driving(x,y) ~ Going-to(x,y) 
Vx,y, Likes(x,drivin g) ~Drivin g(x,y) 

Output: Driving(John, New York): ot 

• A b d u c t i v e  d e r i v a t i o n  
Input: In(House, Smoke) 
BK; In(x, Smoke) <--> In(x, Fire) 
Output: In(House, Fire): ~ 

• C o n s t r u c t i v e  i n d u c t i v e  e e n e r a l i z a t i o n  
Input: In(John'sApt, Smoke) 
BK: In(x, Smoke) <--> In(x, Fire) 

John'sAt~t c GKBld 
Output: In(GKBid, Fire): a 

(Dawski's paintings, "A girl's face" and 
"Lvov's cathedral," are beautiful) 

(The universal specialization rule; short form) 
(Maybe all Dawski's paintings are beautiful) 

( e e n e r a l i z a t i o n  + d e d u c t i v e  de r i va t i on )  

(Dawski's paintings, "A girl's face" and 
"Lvov's cathedral," are beautiful) 

(Btfl ontn~s tend to be exoensive & oooosite) 
(Maybe all Dawski's paintings are exp~hsive) 

(John lives in Virginia) 
(Fairfax is a "subset" of Virginia) 

fLiving in x imnlies living in suoerset of x) 
(Maybe Joh~ lives-in Fairfax) 

(John is going to New York) 
(John likes driving) 

("Driving to" is a special case of"going to.") 
(Liking to drive m-implies driving to places) 

(Maybe John is driving to New York) 

(There is smoke in the house) 
(Smoke usuallv indicates f'we &converselv) 

(Maybe there is fire in the house) 

( e e n e r a l i z a t i o n  t~lus a b d u c t i o n )  
(Smoke is in John's apartment) 

(Smoke usually indicates f'we &conversely) 
(John's apt. is in the Golden Key building) 

(Maybe there is fn'e in the Golden Key bld) 

Figure 4. Examples of inductive transmutations. 

induction (in which the hypothesis with BK strongly implies the input); the second and 
the last two examples represent contingent induction. The second example would be a con- 
clusive induction, if the rule in BK were 

Yx, y (Pntng(x, y) & Btfl(x) ¢~ Exp(x): ce = usually, /3 = 1 

("All beautiful paintings are usually expensive, but expensive paintings are always beautiful"), 
which does not reflect the facts in real life. In the examples, the subset symbol " C "  is 
used under the assumption that cities, states, apartments, and buildings can be viewed as 
sets of space parcels. 

6. General izat ion vs. abstraction 

This section analyzes two fundamental knowledge-generation transmutations, namely, gen- 
eralization and abstraction, and their opposites, specialization and concretion, respectively. 
Generalization and abstraction are sometimes confused with each other; therefore we provide 
an analysis of  the differences between them. We start with generalization and specialization. 
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6.1. Generalization and specialization 

As stated earlier, our view of generalization is that it is a knowledge transmutation that 
extends the reference set of a given description. Depending on the background knowledge 
and the way it is used, generalization can be inductive, deductive, or analogical. Such a 
view of generalization is more general than the one traditionally expressed in the machine 
learning literature, which recognizes only one form of generalization, namely, inductive 
generalization. 

Based on experiments with human subjects, we claim that the view presented here more 
adequately captures the common intuitions and the natural language usage of the term "gener- 
alization?' To express the proposed view rigorously, let us provide a more precise defini- 
tion of the reference set. 

Suppose S is a set of statements in predicate logic calculus. Suppose further that an argu- 
ment of one or more predicates in statements in S stands for a set of entities, and that S 
is interpreted as a description of this set. 

Under this interpretation, the set of entities described by S is called the reference set 
for S. If  the reference set is replaced by a set-valued variable, then the resulting expression 
is called a descriptive schema, and denoted D[R], where R stands for the reference set. 
For example, suppose given is a statement: 

S: In(John'sApt, Smoke) (Smoke is in John's apartment.) 

This statement can be interpreted as a description of the set {John'sApt}. Thus we have 

D[R]: In (R, Smoke) 
R: John'sApt. 

For a given statement, if one ignores the context in which it is used, there could be more 
than one reference set and the corresponding descriptive schema. For example, consider 
the statement: "George Mason lived at Gunston Hall?' It can be interpreted as a description 
of "George Mason" (a singleton set), which specifies the place where he lived. It can also 
be interpreted as a description of "Gunston Hall," which specifies a property of this place, 
namely, that George Mason lived there. The appropriate interpretation of a statement depends 
on the context in which it is used. For example, in the context of a discussion about George 
Mason, the first interpretation would apply; but if Gunston Hall is the object of a discus- 
sion, the second interpretation would apply. 

Suppose two sets of statements, S1 and $2, are given that can be interpreted as having 
reference sets R1 and R2 and descriptive schemes D1 and D2, respectively, i.e., S1 = DI[R1] 
and $2 = D2[R2] 

Definition. The statement set $2 is more general than statement set $1 if and only if 

R2 D R1 and 

D2[R2] t_J BK = DI[R1] (5 ') 

DI [RI]  U BK = D2[R21 (5") 
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If condition (5 ') holds, $2 is an inductive generalization of $1; if condition (5 ") holds, 
$2 is a deductive generalization of S1. By requiring that the compared statements satisfy 
an implicative relation in the context of given background knowledge, the definition allows 
one to compare the generality of statements that use different descriptive concepts or 
languages. 

Let us illustrate the above definition using examples from section 5. 

Example 
SI: 
DI[R1]: 
RI: 

1. (Empirical inductive generalization) 
Pntng(GF, Dwski) & Btfl(GF) (Dawski's painting, "A girl's face," is beautiful.) 
Pntng(R1, Dwski) & Btfl(R1) 
GF (GF is a singleton, {Girl's face}) 

$2: vx, Pntng(x, Dwski) = Btfl(x) 
Alternatively: Btfl(AII__DPs) 

D2[R2]: Btfl(R2) 
R.2:  AII_DPs 
BK: GF C All_DPs 

(All Dawski's paintings are beautiful.) 
(AII__DPs denotes the set of all Dawski's 

paintings.) 
(Paintings from the set R2 are beautiful.) 

(All Dawski's paintings.) 

The interpretation of the predicate Btfl(R) is that the property Btfl applies to every element 
of the set R. Since R2 ~ R1, and D2[R2] ~ DI[R1], then $2 is more general than S1. 

Example 2. (Deductive generalization) 
S 1 : Lives(John, Fairfax) 
DI[R1]: Lives(John, R1) 
R1: Fairfax 

(John lives in Fairfax.) 

$2: Lives(John, Virginia) 
D2[R2]: Lives(John, R2) 
R2: Virginia 
BK: Fairfax C Virginia 

(John lives in Virginia.) 

$2 is more general than S1 because R2 ~ R1, and DI[R1] tO BK = D2[R2]. 
In human reasoning, generalization is frequently combined with other types of transmuta- 

tions producing various composite transmutations. Here is an example of such a composite 
transmutation. 

Example 3. (Inductive generalization and abduction) 
$1: In(John'sApt, Smoke) (There is smoke in John's apartment.) 
DI[R1]: In (R1, Smoke) 
RI: John'sApt 
BK: In(x, Smoke) ~ In(x, Fire) 

John'sApt C GKBldng 

$2: In(GKBldng, Fire) 
D2[R2]: In(R2, Fire) 
R2: GKBldng 

(There is fire in Golden Key Building.) 
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In this example, a generalization transmutation of  the input produces a statement "Smoke 
is in the Golden Key building." An abductive derivation (also called abductive explanation) 
applied to the same input would produce a statement "There is fire in John's apartment." 
By applying abductive derivation to the outptut from generalization, one obtains a statement 
"There is fire in Golden Key building." 

The above definition defined a generalization relation only between two sets of statements. 
Let us now extend this definition to the case in which the input may be a collection of 
sets of statements. Such a case occurs in learning rules that generalize a set of examples 
(each example may be described by one or more statements.). 

Definition. The statement set, S, is a generalization of a collection of statement sets {Si}, 
i = 1, 2, . .  k, if and only if S is more general than each Si. 

Summarizing, a generalization transmutation is a mapping from one description (input) 
to another description (output) that extends the reference set of the input. Depending on 
the background knowledge, such an operation can be inductive or deductive. 

A transmutation opposite to generalization is specialization, which reduces the reference 
set of a given set of statements. A typical form of specialization is deductive, but there 
can also be an inductive specialization. For example, a reverse of the inductive specializa- 
tion in figure 4 is a deductive generalization: 

Input: 
BK: 

Lives(John, Fairfax) (John lives in Fairfax.) 
Fairfax C Virginia (Fairfax is a "subset" of Virginia.) 
Yx, y, z, y C z & Lives(x,y) = Lives(x, z) (Living in y implies living 

in a superset of y.) 

Output: Lives(John, Virginia) (John lives in Virginia.) 

In the above example, Fairfax and Virginia are interpreted as reference sets (sets of land 
parcels). The Input states that a property of Fairfax is that "John lives there." The property 
"Living in a set of  land parcels" means occupying some elements of this set. This is an 
existential property of a set, which is defined as a property that applies only to some un- 
specified elements of the set. If  a set has such property, then so do its supersets. This is 
why the above inference is deductive. 

In contrast, a universal property of a set applies to all elements of the set. If  a set has 
such a property, so does its every subset, but not every superset. Thus, if in the above 
example a "universal property" was used, e.g., "Soil(good, Fairfax)," a generalization 
transmutation to "Soil(good, Virginia)" would be inductive. 

Generalization/specialization transmutations are related to another type of transmutations, 
namely, abstraction/concretion. Transmutations of these two types often co-occur in com- 
monsense reasoning; therefore they are easy to confuse with each other. By changing the 
interpretation of an input statement (i.e., by differently assigning the reference set and 
descriptive schema in a statement), deductive generalization can often be reinterpreted as 
abstraction. Abstraction and concretion transmutations are analyzed below. 
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6.2. Abstraction and concretion 

Abstraction reduces the amount of information conveyed by a description of a set of entities 
(the reference set). The purpose of abstraction is to reduce the amount of information about 
the reference set in such a way that the information relevant to the learner's goal is preserved 
and the irrelevant information is discarded. For example, abstraction may transfer a descrip- 
tion from one language to another language in which the properties of the reference set 
relevant to the reasoner's goal are preserved, but other properties are not. An opposite 
operation to abstraction is concretion, which generates additional details about a given ref- 
erence set. 

A simple form of abstraction is to replace a specific attribute value (e.g., the length in 
centimeters) in the description of an entity by a less specific value (e.g., the length stated 
in linguistic terms, such as short, medium, or long). A complex abstraction would be, 
e.g., to take a description of a computer in terms of electronic circuits and connections, 
and, based on background knowledge, change it into a description in temps of the functions 
of major components. Typically, abstraction is a form of deductive transmutation, because 
it preserves the important information in the input and does not hypothesize any informa- 
tion (this latter possibility may occur when the input or BK contain uncertain information). 

Let us express this view of abstraction more formally. An early formal definition of abstrac- 
tion was proposed by Plaisted (1981), who considered it as a mapping between languages 
that preserves instances and negation. A related but somewhat different view was presented 
by Giordana, Saitta, and Roverso (1991), who consider abstraction as a mapping between 
abstract models. In the view presented here, abstraction is a mapping between descriptions 
based on background knowledge. Specifically, it is a knowledge transmutation that creates 
a less detailed description from a more detailed description of the same set of entities (the 
reference set), using the same or other terms. Unlike generalization, it does not change 
the reference set, but only changes the description of it. 

Suppose given are two sets of expressions, S1 and $2, that can be interpreted as having 
descriptive schemes D1 and D2, respectively, and the same reference set, R. 

Definition. $2 is more abstract than $1 in the context of background knowledge BK, and 
with the degree of strength o~, if and only if 

DI[R] U BK = D2[R]: c~, where c~ _> Th (6) 

and there is a homomorphic mapping between the set of properties specified in D1, and 
the set of properties specified in D2. The threshold Th denotes a limit of acceptability 
of transformation as abstraction. 

The last condition is needed to exclude arbitrary deductive derivations. The most com- 
mon form of abstraction is when (6) is a standard (conclusive) implication (c~ = 1). In 
this case, the set of strong inferences (deductive closure) that can be derived from the out- 
put (abstract) description and BK is a proper subset of strong inferences that can be derived 
from the input description and BK. This case can be called a strong abstraction, in contrast 
to weak abstraction, which occurs when ~ < 1. 
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An example of weak absraction is when a picture of a table seen from one side (without 
seeing all legs) is transformed to a sketch of this table from a somewhat different side, 
showing four legs. When inference goals are defined, a "good" abstraction should preserve 
the inferences that are important to the goals and ignore those that are not. Comparing 
(5) and (6), one can see that an abstraction transmutation can be a part  of an inductive 
generalization transmutation. For that reason, these two transmutations are sometimes con- 
fused with each other. 

6.3. An illustration of the difference between abstraction and generalization 

Let us illustrate the difference between abstraction and generalization by a simple exampte. 
Consider a statement d({ri}, v), saying that descriptor d takes value v for entities from 
the s e t  { r i } .  Thus, the reference set of this statement is R = {ri} , i = 1, 2, . . . ,  and a 
descriptive schema is D[R] = d(R, v). Let us write the above statement in the form that 
illustrates syntactically the difference between the reference set and a descriptor value: 

d(R) = v (7) 

Changing (7) to d(R) = v', where v '  represents a more general concept, e.g., a parent 
node in a generalization hierarchy of values of the attribute d, is an abstraction transmuta- 
tion. Changing (7) to a statement d(R ' )  -- v, in which R'  is a superset of R, is a generaliza- 
tion operation. 

For example, transferring the statement "color(my-pencil) = light-blue" into "color(my- 
pencil) = blue" is an abstraction operation. To see this, notice that {[color(my-pencil) 
= light-blue]} & (light-blue C blue) = [color(my-pencil) = blue]. Transforming the orig- 
inal statement into "color(all-my-pencils) = light-blue" is a generalization operation. Finally, 
transferring the original statement into "color(all-my-pencils) = blue" is both generalization 
and abstraction. In other words, associating the same property with a larger set is a gen- 
eralization; associating less information with the same set is an abstraction operation. Com- 
bining the two is a composite transmutation. 

An opposite transmutation to abstraction is concretion, which increases the amount of 
information that is conveyed by a statement about the given set of entities (reference set). 

The two pairs of mutually opposite transmutations, i.e., {generalization, specialization} 
and {abstraction, concretion}, differ by the aspects of knowledge they change. I f  a trans- 
mutation changes the size of the reference set of  a description, then it is generalization 
or specialization. I f  a transmutation changes the amount of information (detail) conveyed 
by a description of a reference set, then it is abstraction ,~r concretion. In other words, 
generalization (specialization) transforms descriptions alo~,g the set-superset (set-subset) 
direction, and is typically falsity-preserving (truth-preserving). In contrast, abstraction (con- 
cretion) transforms descriptions along the more-to-less-detail (less-to-more-detail) direc- 
tion, and is typically truth-preserving (falsity-preserving). Generalization often uses the 
same description space (or language) for input and output statements, whereas abstraction 
often involves a change in the description space (or language). 

28 



INFERENTIAL THEORY OF LEARNING 137 

7. Simil izat ion vs. diss imil izat ion 

The similization transmutation uses analogical inference to derive new knowledge. A dis- 
similization transmutation derives new knowledge based on a lack of analogy. As mentioned 
in section 2, analogical reasoning can be considered as a combination of inductive and 
deductive inference. Before we demonstrate this claim, let us observe that an important 
part of our knowledge is dependencies among various entities in the world. These dependen- 
cies can be of different strengths or types, such as functional, monotonic, correlational, 
general trend, etc. For example, we know that the dimensions of a rectangle exactly deter- 
mine its area (this is a unidirectional functional dependency), that smoking causes lung 
cancer (this is a weakly causal dependency), or that improving education of citizens is good 
for the country (this is an unquantified belief). 

Such dependencies are often bidirectional, but the "strength" of the dependency in dif- 
ferent directions may vary considerably. For example, from the fact that Martha is a heavy 
smoker one may develop an expectation that she will likely get lung cancer later in her 
life; from learning that Betty has lung cancer, one may hypothesize that perhaps she was 
a smoker. The "strength" of these conclusions, however, may be quite different. Betty may 
have lung cancer for other reasons, or perhaps she was only married to a smoker. The 
dependencies can be known at different levels of specificity. In the past, the dependency 
between smoking and lung cancer was only a general hypothesis; now we have a much 
more precise knowledge of this dependency. 

Section 3 introduced the notion of mutual implication (equation (2)) to express a wide 
class of such relationships. In order to describe a similization transmutation, we will extend 
the notion of mutual implication into a more general mutual dependency. As defined earlier, 
mutual implication expresses a relationship between two predicate logic statements (well- 
formed formulas; closed predicate logic sentences with no free variables). A mutual depen- 
dency expresses a relationship between two sentences that are both either predicate logic 
statements or term expressions (open predicate logic sentences, in which some of the argu- 
ments are free variables). 

To state that there is a mutual dependency (m-dependency) between two sentences S1 
and $2, we write 

S1 ¢~ $2: c~, ~3 (8) 

where merit parameters ot and/3 represent an overall forward strength and backward strength 
of the dependency, respectively, o~ and ~3 represent the average certainty with which a value 
of S1 determines a value of $2, and conversely. 

I f  S1 and $2 are statements (well-formed formulas), then m-dependency is an m- 
implication. I f  S1 and $2 are term expressions, then mutual dependency expresses a rela- 
tionship between functions (since term expressions can be interpreted as functions). If terms 
expressions in a mutual dependency are discrete functions, then mutual dependency is logi- 
cally equivalent to a set of mutual implications. A special case of m-dependency is deter- 
mination, introduced by Russell (1989), and used for characterizing a class of analogical 
inferences. Determination is an m-dependency between term expressions in which ~ is 
1, and ~3 is unspecified, that is, a unidirectional functional m-dependency. 
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The concpet of m-dependency allows us to describe similization and dissimilization trans- 
mutations. These transmutations involve determining a similarity or dissimilarity between 
entities, and then given some knowledge about one entity, hypothesizing some new knowl- 
edge about another entity. The concept of similarity is sometimes misunderstood and viewed 
as an objective, context-independent property of objects. In reality, the similarity between 
any two entities is highly context dependent. Any two entities (objects, sets of objects, be- 
haviors, etc.) can be viewed as boundlessly similar or boundlessly dissimilar, depending 
on what descriptors are used to characterize them, or, in other words, what properties are 
used to compare the entities. Therefore to talk meaningfully about a similarity between 
entities, one needs to indicate, explicitly or implicitly, the relevant descriptors. To capture 
this idea, we employ the concept of the similarity in the context introduced by Collins and 
Michalski (1989). To say that entities E / E 2  are similar in context CTX (which defines 
relevant descriptors D), we write 

E1 SIM E2 in CTX(D) (9) 

This statement says that values of the descriptors from the set D for the entity E1 and for 
the entity E2 differ no more than by some assumed tolerance threshold. For numerical 
descriptors, the theshold "Th" can be expressed as a percentage, relative to the larger value. 
For example, i fTh = 10%, the values of the descriptor cannot differ more than 10%, rela- 
tive to the larger value. Descriptors in D can be attributes, relations, functions, or any 
transformations applicable to the entities under consideration. The threshold expresses the 
required degree of similarity for triggering the inference. 

The similization transmutation is a form of analogical inference, and is defined by the 
following schema: 

Input: E1 = A 

BK: E1 SIM E2 in CTX(D) 
D = A:c~ > RT 

Output: E2 = A (10) 

where a > RT states that the strength of the forward term dependency D ~ A should be 
above a relevance threshoM, RT, in order to trigger the inference. RT is a control parameter 
for the inference. 

Given that entity E1 has property A, and knowing that there is a similarity between E1 
and E2 in terms of descriptors defined by D, the rule hypothesizes that entity E2 may also 
have property A. This inference is allowed, however, only if there is a dependency between 
the property A and descriptors defined by D. The reason for the latter condition can be 
illustrated by the following example. Suppose we know that some person who is handsome 
and has received their Ph.D. from MIT. It would not be reasonable to hypothesize that 
another person who we find handsome also received their Ph.D. from MIT. The reason 
is that we do not expect any dependency between looks of a person and the university from 
which that person gets a Ph.D. degree. 
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A dissimilization transmutation draws an inference from the knowledge that two entities 
are very different in the context of some descriptors. A dissimilization transmutation follows 
the schema 

Input: E1 = A 

BK: E1 DIS E2 in CTX(D) 
D = A : c ¢ >  RT 

Output: E2 = - A  (11) 

where DIS denotes a relation of dissimilarity, and other parameters are as in (10). 
Given that some entity E1 has property A, and knowing that entities E1 and E2 are very 

different in terms of descriptors that are in mutual dependency relation to A, the transmuta- 
tion hypothesizes that maybe E2 does not have the property A. 

The following simple example illustrates dissimilarity transmutation. Suppose we are 
told that apples grow in Poland. Knowing that apples are different from oranges in a number 
of ways, including the climate they require in order to grow, and that the climate of the 
area is m-dependent on the type of fruit grown there, one may hypothesize that perhaps 
oranges do not grow in Poland. Other examples of dissimilization are discussed by Collins 
and Michalski (1989). 

Let us now illustrate the similization transmutation by a real-world example, and then 
demonstrate that it can be viewed as a combination of inductive and deductive inference. 
To argue for a national, ultra-speed electronic communication network for linking industrial, 
governmental, and academic organizations in the U.S., its advocates used an analogy that 
"Building this network is an information equivalent of building national highways in the 
'50s and '60s," There is little physical similarity between building highways and electronic 
networks, but there is an end-effect similarity in that they both improve communication. 
Since building highways helped the country, and thus was a good decision, then by analogy, 
building the national network will help the country, and is also a good decision to make. 
Using the schema (10), we have: 

Input: 
BK: 

Decision(Bid, NH) SIM Decision(Bid, NN) in CTX (FutCom) 
Decision(Bid, NH) = Effect-on(U.S., good) 
FutCom (US, x) = Effect-on(US, x): et > RT 

Output: Decision(Bid, NN) = Effect-on(US., good) (12) 

where 

NH--stands for National Highways 
NN--stands for National Network 
Decision(Bid, x)--a statement expressing the decision to build x 
FutCom(area, state)--a descriptor expressing an evaluation of the future state of communica- 

tion in the "area" that can take values: "will improve" or "will not improve" 
Effect-on(US, x)--a  descriptor stating that "the effect on the US is x." 
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We will now show how the general schema (10) can split into an inductive and deductive 
step. 

An inductive step: 
Input: E1 SIM E2 in CTX(D) 
BK: D ¢~ A: t~ > RT 

Output: E1 SIM E2 in CTX(D, A) (13) 

From the similarity between two entities in terms of descriptor D, and a mutual dependency 
between the descriptor and some new term (descriptor) A, the schema hypothesizes a simi- 
larity between the entities in terms of D and A. The deductive step uses the hypothesized 
relationship of similarity to derive new knowledge. 

A deductive step: 
Input: E1 SIM E2 in CTX(D, A) 
BK: E1 = A(~) 

Output: E2 = A ( ~ ' )  (14) 

where A(~) states that descriptor A takes value ~, and 6~ is equal or sufficiently close 
(for the learner's goals) to ~2'. 

Using the above schemes, we can now describe the previous example of similization in 
terms of an inductive and deductive step. 

An inductive step: 
Input: Decision(Bid, NH) SIM Decision(Bid, NN) in CTX (FutCom) 
BK: FutCom(US, x) = Effect-on(US, x): a > RT 

Output: Decision(Bid, NH) SIM Decision(Bid, NN) in CTX (FutCom, Effect-on) 
(15) 

A deductive step: 
Input: Decision(Bid, NH) SIM Decision(Bid, NN) in CTX (FutCom, Effect-on) 
BK: Decision(Bid, NH) = Effect-on(US, good) 

Output: Decision(Bid, NN) = Effect-on(US, good) (16) 

From the knowledge that the decision to build national highways is similar to the decision 
to build national networks from the viewpoint of communication in the U.S., and that com- 
munication in the U.S. has an effect on the U.S., the inductive step hypothesizes that there 
may be a similarity between two decisions also in terms of their effect on the U.S. The 
deductive step uses this similarity to derive a conclusion that building NN will have a good 
effect on the U.S., because building highways had a good effect. The validity of the deduc- 
tive step rests on the strength of the hypothesis generated in the inductive step. 
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Summarizing, a similization (dissimilization) transmutation, given knowledge about one 
entity, hypothesizes knowledge about another entity, if the other entity is similar (dissimilar) 
to the first entity. The similarity is measured in terms of properties or transformations char- 
acterizing the relationship among the entities. The above rule holds, however, only if the 
hypothesized properties are sufficiently related, by an m-dependency, to the properties used 
for defining the similarity. 

8. Multistrategy task-adaptive learning 

The ideas presented in previous sections provide a conceptual framework for multistrategy 
task-adaptive learning (MTL), which aims at integrating a whole range of learning strategies. 
A general underlying idea of MTL is that a learning system should by itself determine the 
learning strategy, i.e., the types of inference to be employed and/or the representational 
paradigm that is most suitable for the given learning task (Michalski, 1990; Tecuci & 
Michalski 1991a, b). As introduced in the Inferential Learning Theory, a learning task is 
defined by three components: what information is provided to the learner (i.e., input to 
the learning process), what the learner already knows that is relevant to the input (i.e., 
background knowledge (BK)), and what the learner wants to learn (i.e., the goal or goals 
of learning). Given an input, an MTL system analyzes its relationship to BK and the learn- 
ing goals and on that basis determines a learning strategy or a combination of them. If 
an impasse occurs, a new learning task is assumed, and the learning strategy is determined 
accordingly. 

The above characterization of MTL covers a wide range of systems, from "loosely cou- 
pled" systems that use the same representational paradigm and employ different inferential 
strategies as separate modules, to "tightly coupled" (or "deeply integrated") systems in 
which individual strategies represent instantiations of one general knowledge and inference 
mechanism, to multirepresentational mulfistrategy systems that can synergistically combine 
and adapt both the knowledge representation and inferential strategies to the learning task. 

A general schema for Multistrategy Learning is presented in figure 5. The input to a 
learning process is supplied either by the External World through Sensors, or from a previous 
learning step. 

The Control module directs all processes. The Actuators perform actions on the External 
World that are requested by the Control module, e.g., an action to get additional informa- 
tion. The input is filtered by the Selection module, which estimates the relevance of the 
input to the learning goal. Only information that is sufficiently relevant to the goal is passed 
through. The current learning goal is decided by the Control Module according to the in- 
formation received from an external "master'" system, e.g., teacher, or from the analysis 
of goals residing in the learner's knowledge base. The knowledge base is called a Multitype 
Knowledge Base (MKB) to emphasize the fact that it may contain, in the general case, 
different types of knowlege (various forms of symbolic and/or numeric and/or iconic 
l~mowledge), which can be specified at different levels of abstraction. 

Learning goals are organized into a goal dependency network (GDN), which captures 
the dependency between different goals. Goals are represented as nodes, and the dependency 
among goals by labeled links. The labels denote the type and the strength of dependency. 
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E x t e r n a l  W o r l d  

Figure 5. A general schema of a multistrategy task-adaptive learning (MTL) system. 

If a goal G1 subsumes goal G2, then node G1 has an arrow pointing to node G2. For exam- 
ple, the goal "Learn rules characterizing concept examples" subsumes the goal "Find con- 
cept examples," and is subsumed by the goal "Use rules for recognizing unknown concept 
instances?' The idea of a GDN network was introduced by Stepp and Michalski (1983) 
and was originally used for conceptual clustering. 

In a general GDN for learning processes, the most general and domain-independent goal 
(represented by a node and no input links) is to store any given input and any plausible 
information that can be derived from it. More specific, though also domain-independent, 
goals are to learn certain types of knowledge. 

For example, domain-independent goals may be to learn a general rule that characterizes 
facts supplied by the input, to reformulate a part of the learner's knowledge into a more 
efficient form, to determine knowledge needed for accomplishing some task, to develop 
a conceptual classification of given facts, to validate given knowledge, etc. Each of these 
goals is linked to some more specific subgoals. Some subgoals are domain dependent and 
call for determining some specific piece of knowledge, e.g., "learn basic facts about the 
Washington monument." Such a goal in turn subsumes a more specific goal, e.g., "learn 
the height of the Washington monument." 

Any learning step starts with the goal either directly defined by an external source (e.g., 
a teacher, a failure to accomplish something, etc.) or determined by the analysis of the 
current learning situation. The control module dynamically activates new goals in the GDN 
as the learning process proceeds. The Multitype Inference Engine performs various types 
of inferences/transmutations required by the Control module in search for the knowledge 
specified by the current goal. Any knowledge generated is evaluated and critiqued by the 
Evaluation module from the viewpoint of the learning goal. If the knowledge satisfies the 
Evaluation module, it is assimilated into the MKB. It can then be used in subsequent learn- 
ing processes. 
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Developing a learning system that would have all the features described above is a very 
complex problem, and thus a long-term goal. Current research explores more limited ap- 
proaches to multistrategy-task adaptive learning. One such approach is based on building 
plausible justification trees (see the article by Tecuci in this issue). 

Another approach, called dynamic task analysis, is outlined below. The learning system 
analyzes the dynamically changing relationship between the input, the background knowl- 
edge, and the current goal, and based on this analysis controls the learning process. The 
approach uses a knowledge representation that is specifically designed to facilitate all basic 
forms of inference. The representation consists of collections of type (or generalization) 
hierarchies and part hierarchies (representing part-of relationships). The nodes of the hierar- 
chies are interconnected by "traces" that represent observed or inferred knowledge. This 
form of knowledge representation, called DIH ("Dynamically Interlaced Hierarchies"), 
allows the system to conduct different types of inference by modifying the location of the 
nodes connected by traces. This representation stems from the theory of human plausible 
reasoning proposed by Collins and Michalski (1989). Details are described by Hieb and 
Michalski (1993). 

To give a very simple illustration of the underlying idea, consider a statement "Roses 
grow in the Summer?' Such a statement would be represented in DIH as a "trace" linking 
the node Roses, in the type hierarchy of Plants, with the node grow, in the type hierarchy 
of Actions, and with the node Summer, in the hierarchy of Seasons. By "moving" different 
nodes linked by the trace in different direction, different transmutations are performed. 
For example, moving the node Roses downward to Yellow roses would be a specialization 
transmutation; moving it upward to Garden flowers would be a generalization transmutation. 
Moving the node Summer horizontally to Autumn would be a similization transmutation. 

In the dynamic task analysis approach, a learning step is activated when system receives 
some input information. The input is classified into an appropriate category. Depending 
on the category and the current goal, relevant segments of MKB are evoked and designated 
as BK. The next step determines the type of relationship that exists between the input in- 
formation and BK. The method distinguishes among five basic types of relationship. The 
classification presented below of the types of input is only conceptual. It does not imply 
that a learning system needs to process each type by a separate module. To the contrary, 
due to the underlying knowledge representation (DIH), all these functions are integrated 
into one seamless system, in which they are processed in a synergistic fashion. Here are 
the basic types of the relationship between the input and the background knowledge. 

1. The inpitt represents programatically new information. An input is pragmatically new 
to the learner if no entailment relationship can be determined between it and BK, i.e., 
if it cannot be determined if it subsumes, is subsumed by, or contradicts BK, within goal- 
dependent time constraints. The learner tries to identify parts of BK that are siblings of 
the input under the same node in some hierarchy (e.g., other examples of the concept rep- 
resented by the input). If this effort succeeds, the related knowledge components are gener- 
alized, so that they account now for the input and possibly for other information stored 
previously. The resulting generalizations and the input facts are evaluated for "importance" 
(to the goal) by the Evaluation module, and those that pass an importance criterion are 
stored. If the above effort does not succeed, the input is stored, and the control is passed 
to case 4. Generally, case 1 involves some form of inductive learning (empirical learning, 
constructive induction), and/or learning by instruction. 
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2. The input is implied by or implies BK. This case represents a situation when BK ac- 
counts for the input or is a special case of it. The learner creates a derivational explanatory 
structure that links the input with the involved part of BK. Depending on the learning task, 
this structure can be used to create new knowledge that is more adequate ("operational," 
more efficient, etc.) for future handling of such cases. If  the new knowledge passes an 
"importance criterion," it is stored for future use. This mechanism is related to ideas about 
the utility of explanation-based learning (Minton, 1988). If  the input represents a "useful" 
result of a problem-solving activity, e.g., "given state x, it was found that a useful action is 
y, and if such a rule is sufficiently general to be evoked sufficiently often, then storing it is 
cost-effective. Such a mechanism is related to chunking used in SOAR (Laird, Rosenbloom, 
& Newell, 1986). If  the input information (e.g., a rule supplied by a teacher) implies some 
part of BK, then an "importance criterion" is applied to it. If  the criterion is satisfied, 
the input is stored, and an appropriate link is made to the part of BK that is implied by 
it. In general, this case handles situations requiring some form of analytic learning. 

3. The input contradicts BK. The system identifies the part of BK that is contradicted 
by the input information, and then attempts to specialize this part. If  the specialization 
involves too much restructuring or the confidence in the input is low, no change to this 
part of BK is made, but the input is stored. When some part of BK has been restructured 
to accommodate the input, the input also is stored, but only if it passes an "importance 
criterion." I f  contradicted knowledge is a specific fact, this is noted, and any knowledge 
that was generated on the basis of the contradicted fact is to be revised. In general, this 
case handles situations requiring a revision of BK through some form of synthetic learning 

* or managing inconsistency. 
4. The input evokes an analogy to a part of BK. This case represents a situation when 

the input does not match any background fact or rule exactly, nor is related to any part 
of BK in the sense of case 1, but there is similarity between the fact and some part of 
BK at some level of abstraction. In this case, matching is done at this level of abstraction, 
using generalized attributes or relations. If  the fact passes an "importance criterion," it 
is stored with an indication of a similarity (analogy) to a background knowledge compo- 
nent, and with a specification of the aspects (abstract attributes or relations) defining the 
analogy. For example, an input describing a lamp may evoke an analogy to the part of 
BK describing the sun, because both lamp and sun match in terms of an abstract attribute 
"produces light." 

5. The input is already known to the learner. This case occurs when the input matches 
exactly some part of BK (a stored fact, a rule or a segment). In such a situation, a measure 
of confidence associated with this part is updated. 

Summarizing, an MTL learner may employ any type of inference and transmutation during 
learning. A deductive inference is employed when an input fact is consistent with, implies, 
or is implied by the background knowledge; analogical inference is employed when the 
input is similar to some part of past knowledge at some level of abstraction; and inductive 
inference is employed when there is a need to hypothesize new and/or more general 
knowledge. The above cases have been distinguished for the sake of theory. By using a 
proper knowledge representation (such as DIH), they all can be performed in a seamless 
way by one integrated mechanism. 
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9. An illustration of MTL 

To illustrate the ideas of MTL outlined above in terms of the Inferential Theory of Learn- 
ing, let us use a well-known example of learning the concept of a "cup" (Mitchell, Keller 
& Kedar-Cabelli, 1986). The example is deliberately oversimplified, so that the ideas can 
be presented in a ~,ery simple way. 

Figure 6 presents several inferential learning strategies as applicable to different learning 
tasks (as defined by a combination of the input, BK, and the desired output). For each 
strategy, the figure shows the input and the background knowledge required by a given 
learning strategy, and the output knowledge produced. The strategies are presented as inde- 
pendent processes only in a conceptual sense. In the actual implementation of MTL, all 
strategies are to be performed within one integrated inference sytem. The system specializes 
to any specific strategy using one general computational mechanism, based on Dynamic 
Interlaced Hierarchies (Hieb & Michalski, 1993). In figure 6, the name "obj" (in small 
letters) denotes a variable; the name "CUPI" (in capital letters) denotes a specific object. 
The top part of the figure presents the following: 

• An abstract concept description (Abstract CD) for the concept "cup." 
Such a description characterizes a concept (or a set of entities that constitute the con- 
cept) in absract terms, i.e., in terms that are assumed not be directly observable or meas- 
urable. Here, it states that a cup is an open vessel that is stable and liftable. The relation- 
ship between individual conditions and the concept name is viewed as mutual implication. 

® The domain rules. 
These rules (formally, m-implications) relate abstract terms to observable or measurable 
properties ("operational" properties). These rules can be used to derive abstract proper- 
ties from operational properties or operational properties from abstract ones. For exam- 
ple, the abstract property "open vessel" can be derived from the observed property that 
the object is "up-concave," and that the object is "stable," if it has "fiat bottom." 

® A specific object description (Specific OD) of an example of a cup. 
Such a description characterizes a specific object (here, a cup) in terms of operational 
properties. By an example of a concept is meant a specific OD that is associated with 
the concept name. 

® An abstract object description (Abstract OD). 
Such a description characterizes a specific object in abstract terms. It is not a generalization 
of an object, since its reference set is still the same object. Here, this description char- 
acterizes the specific cup, CUP1, in terms of abstract properties. 

® An operational concept description (Operational CD). 
This description characterizes the concept in observable or measurable terms ("opera- 
tional" terms). Such a description is used for recognizing the object from observable 
properties of the object. Notice that the argument of the predicates here is not some 
specific cup, but the variable "obj." 

The bottom part of the figure illustrates several inferential learning strategies (correspond- 
ing to the primary knowledge transmutation involved) using the above concepts. For each 
strategy, the input to the process, the background knowledge (BK), and the goal description 
are specified. 
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Cup(oN) /¢. 

Abstract CD : "~ 
Ol~en-vessel(ohi) & Stable(oN) & Lift~'~e(obi) 

Open-vessel(obj) Stable(oN) Liftable(obj) 
Domain rules: ~ ~ ~ 

Up-concave(obj) Has-flat-bottom(obj) ls-light(obj) &Has-handle(obj) 

Example (Specific OD): 
Up-concave(CUP1) &Has-flat-bottom(CUP1) & Is-light(CUP1)& Has-handle(CUP1)& 
Color(CUP1) = red & Owner(CUP1) = RSM & Made-of(CUP1) = glass & .... (---> Cup(CuP1 ) 

Abstract OD: 
Open-vessel(CUP1) & Stable(CUP1) & Liftable(CUPl) ~ Cup(CUP1) 

Operational CD: 
Up-concave(obj) & Has-flat-bottom(obj) & Is-light(obj) & Has-handle(oN) ~ Cup(obj) 

Transmutation Inout + BK: Learning Goal: 

Example t 
D Abstract OD Abstraction Domain rules 

Deductive Example 
Abstract CD / 

Generalization ~> Operational CD Domain rules 

Empirical Induction Examples 
I 

BK' ~> Operational CD 

Constructive Induction Example(s) 
(Case of Generalization) Domain rules ~ Abstract CD 

Constructive Induction Example(s) 
(Case of Abduction) Abstract CD ~( Domain rules 

Multistrategy 
Task-adaptive Learning 

Applies any of the above transmutation, or their combination, 
depending on the learning task, defined by the input, BK and 
the learning goal. 

Explanation: OD and CD stand for object description and concept description, respectively. CUP1 stands lbr a 
specific cup; obj denotes a variable, BK' denotes some limited background knowledge, e.g., a specification of the 
value sets of the attributes and their types. Symbol <~ stands for mutual implication in which the merit 
parameters (the backward and the forward strength) are unspecified. Symbols I> and I< indicate deduction and 
induction, respectively. 

Figure 6. An illustration of inferential strategies. 

The  input and BK are related to the goal  descr ipt ion by a symbol indicat ing the type 

of  the under ly ing inference:  ] > for deduct ion  and I < for induction.  A descr ipt ion of  an 

object  or  of  a concept  is associated wi th  a concept  name by a mutual  dependency relat ion 

~ (without  defining the mer i t  parameters) .  The  use of  mutual  dependencies  emphasizes  
a bidirect ional i ty  of  the inference.  I f  an unknown entity matches  the left-hand side of  the 

dependency, then it can be  assigned the concept  on  the r ight-hand side. Conversely,  i f  one 
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knows that an entity represents a concept on the right-hand side, then one can derive prop- 
erties stated on the left-hand side of the dependency. The sign ~ of mutual implication 
also expresses the fact that the general concept description is a hypothesis rather than a 
proven generalization. The mutual implication used here can be viewed as a generalization 
of the concept assignment operator ":: > "  which is sometimes used in the machine learn- 
ing literature for denoting the link between a concept description and the corresponding 
concept name. 

10. Summary 

The Inferential Theory of Learning provides a unifying theoretical framework for characteriz- 
ing logical capabilities (or competence) of learning processes. It analyzes learning proces- 
ses in terms of generic patterns of knowledge transformation, called transmutations. 
Transmutations take input information and background knowledge, and generate some new 
knowledge. They represent either different patterns of inference ("knowledge-generation 
transmutations") or different patterns of knowledge manipulation ("knowledge-manipulation 
transmutations"). Knowledge-generation transmutations change the logical content of input 
knowledge, while knowledge-manipulation transmutations perform managerial operations 
that do not change the knowledge content. Transmutations can be performed using any 
kind of inference--deduction, induction, or analogy. 

Several fundamental knowledge-generation transmutations have been analyzed and illus- 
trated by examples: generalization, abstraction, and similization. These were shown to differ 
in terms of the aspects of knowledge that they change. Specifically, generalization and 
specialization change the reference set of a description; abstraction and concretion change 
the level of detail of a description of the reference set; and similization and dissimilization 
hypothesize new knowledge about a reference set based on the similarity or lack of similarity 
between the source and the target reference sets. 

By analyzing diverse learning strategies and methods in terms of abstract, implementation- 
independent transmutations, the Inferential Theory of Learning offers a very general view 
of learning processes. Such a view provides a clear understanding of the roles and the ap- 
plicability conditions of diverse inferential learning strategies and facilitates the development 
of a theoretically well-founded methodology for building multistrategy learning systems. 

The theory was used to outline a methodology for multistrategy task-adaptive learning 
(MTL). An MTL system determines by itself which strategy, or combination of strategies, 
is most suitable for a given learning task. A learning task is defined by the input, background 
knowledge, and the learning goal. MTL aims at integrating strategies such as empirical 
and constructive generalization, abductive derivation, deductive generalization, abstraction, 
and analogy. 

Many ideas presented here are at a very early stage of development, and a number of 
topics need to be explored in future research. Much more work is needed on the formalization 
of the proposed transmutations, on a clarification of their interrelationships, and on the 
identification and analysis of other types of knowledge transmutations. Future research 
needs to address also the problem of the role of goal structures, their representation, and 
the methods for their use for guiding learning processes. 
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Open problems also include the development of an effective method for measuring the 
amount of knowledge change resulting from different transmutations, and the amount of 
knowledge contained in various knowledge structures in the context of a given BK. Other 
important research topics are to systematically analyze existing learning algorithms and 
paradigms using concepts of the theory, that is, to describe them in terms of knowledge 
transmutations employed. A research problem of great practical value is to use the theory 
for determining clear criteria for the most effective applicability of different learning strat- 
egies in diverse learning situations. 

The proposed approach to multistrategy task-adaptive learning was only briefly sketched. 
It needs much more work and a proof of concept. Future research should also investigate 
different approaches to the implementation of multistrategy task-adaptive learning, investigate 
their relationships, and implement experimental systems that synergistically integrate all 
major learning strategies. It is hoped that the presented research, despite its early state, 
provides a good insight into the complexities of research in multistrategy learning and that 
it will stimulate the reader to undertake some of the indicated research topics. 
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